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CHAPTER 1
INTRODUCTION
1.1 DESCRIPTION OF PROBLEM

Digital signal processors (DSP) are being used to perform the moving-
target-indicator (MTI) function in radar systems [1]. There are many ad-
vantages obtained by using the DSP approach, e.g., 1) increased flexibil-
ity in meeting a specific requirement through the use of adaptive and
time-varying system structure, 2) decreased maintenance and fine tuning
requirements of analog systems, etc. However, the finite length of data
words used in a DSP system produce errors that are not present in an infi-
21%$ precision case. These quantization errors can be categorized as

ollows:

1; Analog-to-diaital quantization of input signal.

2) Quantization of processor parameters, such as co-
efficient values, due to finite word lengtt «on-
straint,

3) Quantization of arithmetic operations within the
processor.

It would appear that the output quantization error is a monotonically
decreasing function for increasing length of the various finite represen-
tations used in the procassor. There are exceptions to this intuitive
rule as shown later in this report. The hardware complexity is an in-
creasing function for increasing word length. The design objective is to
produce a DSP with minimum hardware complexity which will give acceptable
system error performance. It is not necessary to minimize the quantiza-
tion error, but it is desirable to keep this error below the other errors
present in the system. Random noise is inherently associated with the
input signal and this produces a corresponding random error at the DSP
output. The performance of the system is not adversely affected by the
random quantization errors which are less than the errors induced by the
input random noise.

Two methods of implementing the DSP are: 1) performing the arithme-
tic operations with fixed-point numbers and 2) floating-point numbers.
There are various advantages and disadvantages of these two approaches.
It is generally recognized that a floating-point structure gives a larger
dynamic range, but requires more hardware. Detailed analyses of these
methods are presented in this report for a quadrature channel radar sys-
tem. The specific structure of the radar system DSP considered in this
work is different from digital filter systems analyzed in the literature.
This uniqueness has made it extremely difficult to apply the results ob-
tained by other authors and reported in the open literature. However,
these previous efforts have established analytical procedures that are
utilized in this work.
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1.2 PREVIOUS RESULTS

Two categories of previous results are considered. First, statisti-
cal models associated with the error introduced b ‘ roundoff and trunca-
tion of two's complement binary numbers are reviewed. Second, the anal-
yses of quantization errors in digital filters are considered for their
application to the radar DSP.

Gold and Rader [2] have set the example of statistical models to be
used for roundoff, truncation and sign-magnitude truncation. They have
also considered the effects of inexact values of filter parameters, A/D
conversion quantization and product quantization. The main point of
their work is to show that certain recursive digital filter forms are
less sensitive to quantization error than are other forms. The results
obtained are not applicable to the fixed-window nonrecursive digital fil-
ter used in the radar moving-target-indicator,

Oppenheim and Schafer ?3] have treated roundoff and truncation for
sign magnitude, two's-complement and one's complement number systems for
both fixed-point and floating-point configurations. They analyze both
infinite impulse response (IIR? and finite impulse response filters. The
signal flow graph approach used on pages 439 through 441 is very usefu)
for the work documented in this report. However, the results do not ap-
ply to a fixed-window MTI.

Chapter 5 of Rabiner and Gold [4] is similar to the Oppenheim and
Schafer presentation but has a slightly adifferent emphasis. This same
comment applies to Oppenheim and Weinstein [5].

The works of Sandberg [6] and Liu and Kaneko [7] are primarily de-
voted to floating-point realizations of recursive filters. The flow
graph presentation has been adapted for use in this report.

A1l of the above referenced literature share the disadvantage that
they do not directly apply to the fixed-window MTI structure used in the
radar signal processor. Also, the qua.rature channel structure, which
requires that /IZ + Q% be determined, has not been included in the results
cited in the literature. The results indirectly apply to digital filters
but not to the entire radar digital signal processor. An analysis of a
fixed-point DSP was made on the LRCP for the U.S. Army in the summer of
1975. The report [8] submitted on this task has outlined the basic ana-
Tyticat and simulation procedures that were continued on this grant.

1.3 OUTLINE OF RESEARCH TASKS AND REPORT

This project was organized into three areas, viz., 1) Theoretical
analyses of fixed-point and floating-point DSP, 2) Simulation program de-
velopmont and analysis of fixed-point and floating-point DSP and 3)
Floating-point hardware design considerations. Each of these areas was
directed at a quadrature channel radar signal processor with a square-
root-of-the-sum-cf-the-squares unit and a post residue integrator. The
exart configuration will be presented later in this report. The areas
were divided into tasks as follows. Moore refined the LRCP analysis [8]
for a fixed-point processor as presented in Chapter 2 while Trivedi
worked with the fixed-point simulation program documented in Chapter 3.
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Holt studied floating-point arithmetic systems and applied these to the
design of a floating-point "3P as reported in Chapter 4. Moore followed
Holt's effort with a the- ical analysis of the floating-point DSP in

Chapter 5 while Holt and (rivedi developed the floating-point simulation

program of Chapter 6.




CHAPTER 2

THEORETICAL ANALYSIS OF FIXED-POINT PROCESSOR
by Jerry D. Moore

2.1 DESCRIPTION OF PROCESSOR

There are many configurations that could be used for a digital signal
processor in a radar system. This effort is limited to pulsed doppler
radars that use gquadrature channels ir the receiver to extract the moving
target information from the noise and clutter signals. A schematic repre-
sentation of the signal processor is shown in Figure 2.1 and the details of
the digital filter configuration are shown in Figure 2.2. This system is
capable of processing multiple range bins (e.g., 1000) by utilizing one
A/D converter per channel and one digital multiplier per channel, Typical
pulse repetition rates of 50N0 pulses/sec requires A/D sample rates of
5 x 108 samples/sec to »ccommodate the 1000 range bins. The filter of
Figure 2.2 is a f-ved- indow ronfiguration, i.e., N samples are used in a
fixed block size tc dotermine a residue cutput. While this results in a
signal-to-noise ratio 14ss as compared to the moving-window approach [9,10]
it does give a much simpler hardware realization.

The residue calculation indicated by Figure 2.1 is ideally given by

Re.idue = vYIZ + Q% , (2.1)

where I and Q are the outputs of the two quadrature channels. In practice,
the square root operation is difficult to implement and various approx-
imations are utilized [1], such as

L + 35/16 0 <S/L<0.5
Residue = (2.2)
3L/4 + 115/16 0.5 < S/L < 1.0

where L = max { [1],]Q]} and S = min {]1],]Ql}. This two-sector approxi-
mation gives a peak error of -2.76%, an RMS error of 12.65%, and an average
error of 0.69% when averagea on all phase angles between I and Q. As will
be shown, this approximation is a major contributor to the DSP errors.

The finite word lengths used in the DSP are shown in Figure 2.3 and
sumrarized in Table 2-1. The nomenclature presented here is used in the
following section to theoretically analyze the fixed-point DSP,

2.2 OUTLINE OF ANALYSIS

The theoretical analysis of the DSP quantization error is presented in
this section. Many symbols, equations, and bounding procedures are neces-
sary and it i< difficult to follow the main development when presented in
its entire detail. Consequently, a summary of the analysis is presented
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TABLE 2-1
FIXED-POINT DSP WORD LENGTH

Symbol Description

MX A/D Converter word Tength. Two's complement form with
1 sign bit and MX - 1 fractional bits.

MC Coefficient word length. Two's complement form with 1
sign bit and MC - 1 fractional bits.

MX + MC - 1 Product word length. Two's complement form with 1 sign
bit and MX + MC - 2 fractional bits.

MT Truncated product word length. Two's complement form
with 1 sign bit and MT - 1 fractional bits.

MF Range bin accumulator word length. Two's complement
form with 1 sign bit, MT - 1 fractional bits and
MF - MT integer bits.

ME Truncated residue w~ord length. Magnitude form with
MF - M1 + 1 integer bits and ME - MF + MT - 1
fractional bits. No sign bit is used.

MS Integrator accumulator word length, Magnitude form

with MS - ME + MF - MT + 1 integer bits and
ME - MF + MT - 1 fractional bits. No sign bit is
used.
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here and detailed derivations, etc., are left to an appendix.

The binary word outputs from the A/D converter are written as the
sum of an erroriess term x{) and the quantization error e(). The output
of the digital filter w() is used every N samples (where N is the number
of filter coerficients) and written as a sum of an errorless output y() and

the quantization error g(), i.e.,

w(mN) = y(mN) + g(mN) | (2.3)
where

() = 3 h(m)x(mk-n)

N)= t© h N-n) .

y(m A n)x(mN-n (2.4)
and

N-1

g(mN) = = [h(n)e(mN-n) + en(mN—n)] . (2.5)
n=0

and h(n) represents the filter coefficients. The term en() introduced in
(2.5) is the reﬁresentation for the truncation of the nth product used in
forming the mNth filter output. The expressions of (2.3), (2.4) and (2.5)
are valid for either the [ or Q channel by adding the appropriate sub-
script.
The output of tne RMS approximation unit, r{) is represented as the
sum of errorless output and an error term epl), i.e.,

r(mN) = Y Z(aN] + wQJ(mN) + e (mN) . (2.6)

The error term is expressed as a random variable term, yy() times the
errorless output since the error is a percentage of the perfect value.

Thus

r(mN) = L1+ v (oN)] Y Z(mN) -+ *TmN] (2.7)

This approximation to the residue is then truncated prior to the integra-
tor, i.e.,

b(mN) = r(mN) + e (mN) , (2.8)
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where b() is the input to the integrator and et() is the truncation error
associated with the residue.

An expression for the integrator output INT(M) is given by the sum of
M residues. Taking into account the finite arithmetic effects yields

M
INT(M) = ¢ b(mN) . (2.9)
m=1

An infinite precision system would have an integrator output that depends
on the input signal frequency, f, and amplitude, A, and the magnitude of
the transfer function associated with the filter, [H{f)|. A perfect
residue is

u(mN) = u = |H(f}| - A , (2.10)

and the errorless integrator output is

INT(M)| =M.u, (2.11)

errorless

The actual integrator output is expressed as the sum of this errorless
term and the error term INTE(M), viz.,

INT(M) = M » u + INTE(M) . (2.12)

The primary goal of this analysis is to study the error term INTE(M).
This will be accomplished by evaluating the average value and variance of
the integrator error. Using the previous results and assuming statisti-
cal independence of the error contributions (see details in Appendix A)
gives for the average error,

and for the variance

- 2 2
M[Gr *ta, 1 .

02
INTE (2.14)

The mean and variance of the truncation term, i.e., et and ot2? can be
calculated precisely, but the corresponding parameters for r() are not
easily obtained. It was necessary to use bounding procedures as presented
in Appendix A. A condensed version of the bounding method is obtained by
notina r() given hy (2.7) is prooortional to the vector magnitude of the
sum of two vectors U and V, where U = (y1, yq) and V = (g1, gq). If u

10




and v are the respective magnitudes of these vectors, then it follows that

(Vv fu-vlsr < (Vv )(u+v), (2.15)

The mN arguments have been omitted for simplicity,
The u term can be evaluated as in (2.10) and

v(mN) = /g, Z(mN) + goZ(mN] (2.16)

The expected value of r from (2.15) can be expressed with the aid of the
Concave/Convex Tteorem of Appendix A as

(+y) Ju-v < (U +y) Ju-vl v+ Mu+v), (2.7)

where

Zl5 <V NZF | (2.18)

It follows from (2.13), (2.17) and (2.18) that

TRTEHY < W[ T+ 0+ 7 )V2 3 + 5, ] (2.19)

and

TNTE(M) > M [(1 + ?;N)\/u2 2.3 -2 /7-u-fg? + € - u],(2.20)

It is possible %o start with (2.15) and use (2.17) to evaluate op?,
i.e.,

52=F .72 (2.21)

.

After con<iderable manipulation the variance term is bounaed as follows,

1
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+2y 727292, (2.22)

and
o 2 (R +2F) 02 - 202 T [FFHyEraY, v 20, (2.23)

It follows from(2.14), (2.22) and (2.23) that

ofwre <M LopZpay * 0¢%1 (2.24)

and
ofnre 2 M LopZpn * 0¢"1 . (2.25)
The 1mportant boungzresults of (2.19), (2.20), (2.24) and (2.25) de-
pend on @ , 0 and g4, The parameters are evaIuated in the following

presentat on. As stated 1n Tahle 2-1, the RMS unit output has MT - 1
fractional bits and MF - MT + 1 integer bits. When this word is truncated
to ME bits total with ME - MF 4+ MT -] fractional bits then the error ey
1s within the range

- + - - +
Assuming & uniform distribution over this range gives
= . - ME + MF - MT _ , - MT
o = - (2 2 ) (2.27)
L T (g MM )2
t K .
(2.28)

12




} From (2.5) it follows that

‘ N4 L
g = n-EO [h(n) e +e ],

(2.29)

but e is equal to zero because of the roundoff procedure used in the A/D

converter and

o = MT + 1 - MX - MC+ 2
- (2 -2 e <0, (2.30)
since 1t is the truncated version of the product. Thus
'é'r'=_(‘4)'MT’2"MX"MC+.‘), (2.3")
and
- MT - -
n 3 . (2.32)
Using (2.31) in (2.29) yields
-§=_N(2—MT_2-MX—MC+]). (2.33)
The variance of g is given by
2 2 2 N-1 2
0g° = No? + ag z hz(n) , (2.34)
n=0
where o2 is the variance of the roundoff error e, i.e.,
-2 MX
2.2 2.35
% 3 y ( )

The mean-squared-value of g is

13
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N-1
§7=02+§2=Non2+0e2 I

h2(n) + N2 e ? |, (2.36)
9 n::O n

This concludes the analysis for the fixed-point processor. The
average error at the inteqrator output can be upper and lower bounded by
using (2.19), (2.20)s the results below (2.2)3 (2.27), (2.29) and (2.36).
The integrator output variance can be bounded by using (2.24), (2.25),
(2.22), (2.23)s the resuits below (2.2)3 (2.34) and (2.36). A computer
program was written to ralculate the values for specified word lengths,
filter coefficients, etc. Appendix B presents the listing of the program.
An additional feature was included into the program, viz., thc capability
of calculating the minimum and maximum values of the integrator output
error. This program was utilized in obtaining the results presented in
the next section.

2.3 GRAPHICAL PRESENTATIONS OF THEORETICAL RESULTS

The computer program of Appendix B was utilized to obtain specific
values for the integrator output error statistics. The results presented
in this section are for an A/D converter word length of MX = 9 bits, co-
efficient word length MC = 9 [see Ref. 1] and various combinations of
truncated product length MT and pre-integrator word length ME. The input
signal ampl:i*ude was also varied, The range bin accumulator word length
MF was chosen to have the same numter of fractional bits as the truncated
product and 3 integer bits to avoid overflow, i.e., MF = MT + 3. In
general the choice is dependent on the number of coefficients being used.

The data presented first are for an input signal amplitude of 0.025
volts with a frequency of 1500 Hz. In Fig. 2.4, the upper bound on the
average output error is plotted as a function of the truncated product
length MT with a family of curves dependent of the truncated residue word
length ME. There are several important observations that can be made
from Fig. 2.4, and from the expanded plot of Fig. 2.5.

1) For a specified member of the family of curves, i.e., given
ME, then the upper bound on the error goes from a positive
value to a negative value as MT is increased.

2) For a given value of ME, the error curve doesn't change
very much when MT increases beyond some threshold value,
(= 11 or 12).

3) For a given vaive of ME, then in general the minimum
magnitude of the error is not obtained by the maximum
value of MT. For example, when ME = 10 the smallest
magnitude error is -3.35 x 1073 and occurs when MT = 11,

4) For a given value of MT, then the minimum magnitude of the
error is not obtained by the maximum value of ME. For
example, when MT = 12 the smallest magnitude error is

14
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-1 x 107" and occurs when ME = 11. If ME is decreased then
a larger magnitude negative error is obtained. If ME is
increased then a larger magnitude positive error is obtained.

5) For decreasing values of MT, then the family of curves tend
to converge.

These observations are supported by the intuitive reasoning that the
RMS unit converts the negative error caused by the product truncation in-
to a positive error. The truncation of the residue will cause a negative
error that will make the output error more negative. The relative con-
tributions of these terms will determine the sign of the resultant error.

Lower bound results for 0.025 volts signal amplitude and 1500 Hz
frequency are presented in Fig. 2.6 and 2.7. The same observations are
noted as above, but the curves have been shifted in a negative direction.

A comparison of the upper and Tower bounds reveals two observations.
First, when ME is small, e.qg., ME = 6, then there is strong convergence.
Second,for larger ME values,e.g., ME > 10, the bounds are not tight. A
typical comparison is shown in Fig. 2.8 for maximum length of ME = MT + 3.
The maximum and minimum error limits are also included for comparison.
Note that the middle point of the extremes is in close agreement to the
middle point of the bounds.

An alternative method for analyzing the data is to present the
average error bounds as a function of ME with MT being fixed. The same
amplitude and frequency signal was used to ob*ain the results of Fig. 2.9.
A value of MT = 13 was chosen as a typical vaise. Note the convergence
of the bound curves as ME decreases. The best choice for ME depends on
which bound is being considered, i.e., for the upper bound ME = 11 or 12
would be chosen while for the lower bound any ME > 12 would be acceptable.

Figures 2.4 through 2.9 have been concerned with the average error
bounds. The integrator output error variance bounds are presented in
Fig. 2.10 as a function of MT with ME as a family of curves. The lower
bound is zero for values of ME and MT not plotted. The following obser-
vations are made:

1) The upper bound curves converge for decreasing values
of MT.

2) The bound curves level off for increasing values of
MT.

3) The upper and lower bound curves converge for ME = 6
or 7 as MT increases.

4) The variance decreases monotonically as ME increases,
but the decrease is small for ME -~ 10.

The curves of Fig. 2.11A and B oresent the variance bounds as a function
of ME with MT as the family parameter. Similar conclusions are drawn.

The second set of data presented are for a signal amplitude of 0.413
volts and 1500 Hz, The average error upper bounds are presented in
Fig. 2.12 through Fig. 2.15 while the variance is presented in Fig. 2.16
through Fig. 2.18. Comparing Fig. 2.12 to Fig., 2 4 reveals a strong
similarity for low values of ME. It is difficult to compare the results

17
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for larger values o. “E by using these curves. However, a comparison of
Fig. 2.13 to Fig. 2.5 reveals that when the truncation error introduced

by ME becomes small, then the error caused by other sources tends to
dominate. The larger signal amplitude used in Fig. 2.13 will have a larger
error contribution due to the 0.69% error of the RMS unit.

A comparison of the upper and lower bounds on the average error is
presented in Figures 2.14 and 2.15. As noted previously for the lower
amplitude case, there is not an advantage gained by increasing ME > 10 or
11. The middle values of the extreme values in Fig. 2.14 do not fall as
closely to the middle of the bound values as they did in Fig. 2.8. This
is attributed to the asymmetrical error properties of the RMS unit that
become predominant for larger signal amplitudes.

The integrator output error variance bounds are presented in Fig. 2.16
as a function of MT with ME as a parameter family. The lower bound is
zero for ME > 8. Similar observations as made for Fig. 2.10 are possible
for this case. However, note that the bound curves are not as tight due
to the large signal amplitude and the corresponding larger error intro-
duced by the RMS unit. It appears that the upper bound curves have
leveled off for MT - 12 or 13.

The variance bounds are presented in Figures 2.17 and 2.18 as a
function of ME with MT as a parameter family. Note that the upper bound
variance does not decrease appreciably for ME > 7 or 8,

A third technique for analyzing the data is to fix the MT parameter
at a value greater than the critical threshold and present the error
statistics as a function of signal amplitude. The average error upper
and Tower bounds are presented in Figures 2.19 and 2.20 with MT = 13,
There is close agreement between the bounds for ME < 9. The bounds are
not strongly dependent on the signal amplitude except for certain isolated
values of ME, e.g., the upper bound curves for ME = 11. The variance
bounds are presented in Fig. 2.21. Note the convergence of the upper
buund curves as the signal amplitude increases. This is a result of the
RMS unit induced error becoming predominant. The bounds are not tight and
appear to diverge for increasing signal amplitude. The variance upper
bound doesn't change much for ME > 9.

The results presented in this section are compared to the simulation
results in Chapter 3.

A follow-on study was attempted after the results presented in
Figures 2.4 through 2.21 were obtained. It was determined that the error
statistics reported in Reference 8 and used in this analysis were not
descriptive of the two sector approximation of (2.2). The root-mean-
square error should be 0.126%% instead of 12.65%. This new information
was incorporated into the computer program and runs made to determine the
affect on the error statistics. The average error was unchanged, but the
error variance did reflect this parameter change. The change was most
pronounced at larger signal amplitudes, e.g., a maximum decrease by a
factor of 2 resulted at 0.317 veclts amplitude in Fig 2.1 whereas a
regligible decrease was noted for amplitudes less than 0.1 volts.
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CHAPTER 3

SIMULATION ANALYSIS OF FIXED POINT~PROCESSOR
by Bhadrayu J. Trivedi

The simulation study of the fixed-point MTI processor was performed
with the aid of a Fortran simulation program developed at The University
of Alabama, Huntsville [14]. A description of the simulation program
and the modifications made to obtain statistical information and a dis-
cussion of the simulation r.sults are presented in this chapter. Section
3.1 deals with the description of the program and Section 3.2 with the
discussion of simulation results,

3.1 DESCRIPTION OF SIMULATION PROGRAM

The simulation program uses an integer programming technique which
represents all the fixed-point binary numbers in the processor as deci-
mal integer numbers. This technique is described in detail in Section
3.1.1. The routines for simulating basic operations such as addition,
multiplication, truncation and/or expansion, finding magnitude, etc., of
binary numbers; are based on this technique. The routines which simulate
the system blocks such as the coefficient quantizer, input A/D converter,
the digital filter, the RMS unit and the integrator also use the same
technique as well as the routines which simulate the basic binary arith-
metic operations. These routines and the overall program are desc-ibed
in Section 3.1.2 with the help of detailed flow charts. The simulation
program as it was used for this project is listed in Appendix E along
with a discussion of data card-formats. Section 3.1.3 suggests improve-
ments in the simulation program that could be implemented to achieve
higher speed and increased efficiency for a typical program run.

3.1.1 Detailed Integer Programming Technique

Throughout the fixed-point processor the arithmetic operations are
performed in a two's complement fixed-point binary scheme. For the pur-
pose of Fortran simulation they are represented as positive decimai inte-
gers. For example, suppose that at a particular point in the processor a
number is represented with N binary digits including the sign. [ts ievel
is defined as

LEVEL = 2V | (3.1)
[f the number has no sign bit, a fictitious sign bit should be added to
compute the level. Let there be L binary digits for the fraciional part
of the number without sign, then the quantization interval is defined as
qr =2k, (3.2)
Therefore,
LEveL/2 = 2V (3.3)
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represents the sign bit in this two's complement integer notation. Table
3-1 illustrates conversion from a real two's complement notation to a
"integer decimal notation.” The real two's complement binary number is
integerized by shifting the radix point to the right-most position. This
binary number then is expressed as an integer decimal number. Note that
in this form the number is always expressed as a positive number. If the
number is smaller than (LEVEL/2) it is a positive number and otherwise
negative. To obtain its real decimal value,LEVEL has to be subtracted
from the negative number; the positive number is not altered. The number
then has to be multiplied by its quantization interval as defined in
Equation (3.2).

The following example illustrates an application of the technique.
Example: Suppose the number (-0.25),, is to be added to itself six
times to obtain the answer (-1.5);9. If (-0.25);o is represented with
N=3 bits its representation in integer decimal notation is 7,4 (i.e.,
1.11,). To avoid an overflow it is necessary to expand the bit-length to
N=4 thereby adding an extra integer bit. Now the number is represented
as 15;p (i.e., 11.115). Now if the number js added to itself six times,
each time ignoring the carry, then the result is 10, (i.e., 10.10,). Now
the result can be truncated down to a bit-length N=3 by deleting the least
significant fractional bit. If the answer is to be expressed in real de-
cimal, then it should be multiplied by (2-!), the new quantization inter-
val after truncation. The original number is represented in the second
row and the final answer in the fourth row of Table 3-1.

TABLE 3-1
INTEGER PROGRAMMING TECHNIQUE TLLUSTRATION

Real Real Integer Integer Q.1

Decimal Two's Two's Decimal
Complement Complement

40,25 0.01 001 1 9~2
-0.25 .1 m 7 272
+1.5 01.1 on 3 21
-1.5 10.1 101 5 271

The above example illustrates that it is essential to use the proper
quantization intervals to convert numbers from integer decimal notation
to real decimal and vice versa, before and after undergoing an arithmetic
operation., If two fractional numbers are multiplied together then the
quantization interval of the product is the product of the quantization
intervals of the two numbers. The next section will show how the simu-~
lation routines keep track and make use of the appropriate quantization
intervals and levels.
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3.1.2 Flow Chart of Simulation Program

In this section the MAIN program and the subroutine STARTQ are de-
scribed. The subroutine STARTQ is the first step implemented by the MAIN
program to read all input parameters, compute data for clutter generation,
and quantize the filter coefficients. It does not perform any special
task and normally this would be done in a MAIN program itself, hence the
MAIN and STARTQ are described together. Next, the group of routines which
simulate the basic binary arithmetic operations such as input and co-
efficient quantization, addition, multiplication, etc. are described.
This is followed by a description of routines which simulate the system
functions such as signal and clutter generation, digital filter, RMS
unit, etc. An effort is made to emphasize features which have been added
to the basic program [14] and those not already apparent from the discus-
sion of the program in Reference [14]. Detailed flow charts were devel-
oped for this purpose.

The objective of the program is to simulate the fixed-point proces-
sor shown in Fig. 2.1 and Fig. 2.3 and generate results that can be used
in a statistical study of quantization errors. The flow charts for the
MAIN program and the subroutine STARTQ are shown in Figs. 3.1 and 3.2
respectively. The simulation is performed over NDWEL antenna dwell~ each
containing NPULSE signal-plus-clutter samples per range bin, NPULSE is a
product of NDELAY, the number of filter coefficients, and NCYCLE, the num-
ber of residues to be integrated. It is & system requirement that NPULSE
be less than 48. The MAIN prugram calls STARTQ to start the simulation
by reading in clutter, signal, radar and filter parameters which are sub-
sequently printed out. These parameters are explained in Appendix E with
the details of how they are specified on input cards. Next, STARTQ calls
the subroutine COEF to quantize the filter coefficients and print the un-
quantized and quantized values. Then, a set of Gaussian random samples
are generated by calling the subroutines ANIT and RANDM. The impulse
response of the digital filter used in the clutter generation is calcu-
lated. The purpose of this filter is to yield clutter samples with a
desired power spectrum from the input Gaussian samples. The clutter
filtering is implemented in subroutine UPDATQ. STARTQ also generates
scale factors for signal and clutter combination. After this the control
reverts back to the MAIN program and all the parameters read and computed
by STARTQ are transferred to MAIN. The MAIN program next reads the
parameters which control RMS-statistics-print, clutter and theoretical
output options. The second option controls whether clutter is to be
added to the doppler signal or not. The third option determines whether
the theoretical output (infinite precision answer) is to be computed with
a quantized or an unquantized set of filter coefficients. If the un-
quantized set is used then a valid basis for comparison between the fixed-
point and floating-point processor statistics can be provided. This fol-
Tows because the quantization error introduced for the same number of co-
efficient bits and the same set of coefficients is different for the two
processors. The MAIN program simulates only one system block, viz., the
integrator. A1l the other system blocks and functions are delegated to
different subprograms. The MAIN program calculates the statistics for
the hardware RMS unit output at the end of each residue or cycle. The
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same is also calculated for the output of an imaginary perfect RMS unit.
The statistics involve computation of the maximum, the minimum, the

mean and the variance of the error in the output. The error is defined

as the actual output minus the theoretical output (see Equations 2.3,

2.6, 2.8, 2.12). The statistics for the difference between the hardware
and perfect RMS outputs are also computed. A similar statistical analysis
is carried out on the integrator outputs, i.e., at the end of each antenna
dwell. Note that the simulation results presented in Section 3.2 pertain
to the integrator output statistics. The nature of the statistics is
biased, i.e., the definition of variance is,

2 7]“—1 (x: - x)? (3.4)

9 i

e =2

1

as given in reference [15]. The MAIN program gives an indication if an
overflow occurred in the filter or integrator operation and also the
total number of A/D saturations over all dwells. The MAIN program calls
the subroutine RANDU for picking a uniformly distributed random phase
starting angle for the doppler signal. The subroutines RANDU and RANDM
are not described in this report because they are canned programs which
depend on the host computer being used.

The subroutine IAD simulates the A/D converter scheme given by
Equation 3.1 and Fig. 3.1 of Reference [14]. This scheme represents the
actual ‘Computer Labs - A/D Converter Model - 5905' being used by the
Radar Technology Branch of the U.S. Army Missile Command at Huntsville.
Note that the output of the A/D converter is in two's complement binary
form with a unique "offset”, i.e., the quantization intervals are centered
at xQI/2, +3QI/2, +5Q1/2 and so on. Normaliy one would expect the quanti-
zation intervals to be centered at 0.0, +QI, +2QI, +3QI and so on [16].
For an "ideal" 3-bit A/D converter equal and opposite analog voltages if
added after conversion to two's complement numbers yield a zero result
if the carry is ignored, e.g., when QI=0.25,

+0.125 = 0012 +0.375 = “’02
- 0.125 = 11]2 - 0.375 = 1102
sum 0.000 = 1)0002 s 0.000 = 1)0002

For a 3-bit A/D converter with the actual offset scheme being used,

+0.126 = 0002 + 0.375 = 0012
- 0.125 = 1112 - 0.375 = 1102
sum 0.000 # 1]12 , 0.000 # 111?

The sum in this case dues not result in a zero. This is a disadvantage
of the A/D scheme being used, however, once the output numbers are avail-
able they are treated as two's complement numbers. Although these numbers
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contain the 'offset', no correction is applied because the actual hard-
ware system [1] is built in this manner. The flow chart for the sub-
routine IAD is shown in Fig. 3.3. Note that it gives a saturation indi-
cation if

Ix] > 1.0, (3.5)

where x is the input analog signal sample.

The flow chart for subroutine COEF is shown in Fig. 3.4. COEF
quantizes a filter coefficient to a snecified bit-length. The routine
requires that the quantization interval and the level be specified. Note
that it uses a round off procedure which increases the magnitude of the
number by one if the remainder of the number after integer quantization
is greater than or equal tc a half quantization interval (see flow chart
for details).

The simulation of two's complement addition is implemented by the
subroutine ADD. Two numbers in two's complement 'integer decimal' form
with the same level are added, the carry is ignored, and any overflow is
getected and a flag is set by this routine. The {low chart is shown in

ig. 3.5,

The function subprogram MUL simulates two's complement multiplication.
The flow chart is shown in Fiy. 3.6. The two numbers are first converted
to sign magnitude representation (in decimal integers), wltiplied and
then converted back to the two's complement 'integer de~imal' form.

For word-length truncation and expansion a function subprogram ITREX
was used which truncates the least significant fractional bits and expands
at the most significant integer end. The expansion for a positive number
involves appending zeros and that for a negative number involves ones at
the most significant integer end. The extent of truncation or expansion
is specified by levels. If the number to be truncated or expanded does
not have a sign bit it is essential to compute the level by adding a
fictitous sign bit to the actual bit-length. The flow chart for ITREX is
shown in Fig. 3.7.

The function subprogram MAGNF finds the magnitude of a two's comple-
mert number and expresses it as a positive decimal integer. Its flow
chart is shown in Fig. 3.8. Note that it rounds up a negative number if
it is the largest negative number representable in the two's complement
scheme (LEVEL/2) to avoid a zero output. As for example, for a 3-bit
number (LEVEL/2) = 100,. This needs Lo be rounded up to 101, to avoid a
zero output.

For each antenna dwell the MAIN program calls the subroutine UPDATQ
once to generate NPULSE samples of clutter for eacn of the I and the Q
channel filters. UPDATQ uses the 1024 Gaussian random samples generated
by STARTQ. It uses INCGAU samples (a subset of the above 1024) for each
dwell. INCGAU is calculated by STARTQ and depends on clutter and system
narameters. If all the samples generated by STARTQ are exhausted it
calls RANDM and generates 1024 more Gaussian samples. It then convolves
INCGAU/2 samples with the clutter model filter impulse response (generated
by STARTQ) and generates & set of NPULSE clutter samples shaped according
to the desired power spectrum. This process is duplicated for the Q chan-
nel as can be seen in the flow chart in Fig. 3.9.

46




»

T

BEGIN
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No. of Q's in X
IX = X/0
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@

Fig. 3.3 Flow Chat for Subroutine IAD
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Fig. 3.3 (Continued)
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Input Variables:
N1, N2, LEVEL

Sign Bit MAX = LEVEL/2
Overflow Flag IOFL =0

1

Sign Bits of N1, N2
ISNT = NT/MAX
ISN2 = N2/MAX

1

ADD
N3 = N1 + N2
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Next find carry

Yes
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Fig. 3.5 Flow Chart for Subroutine ADD
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Fig. 3.6 Flow Chart for Function Subprogram MIL
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NS2 = N2 - LEVEL2
MUL = (NS1) X (NS2)
@——u Next convert MUL
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Integer Decimal
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1
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Fig. 3.6 (Continued)
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Fig. 3.7 Flow Chart for Function Subprogram ITREX
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Fig. 3.9 Flow Chart for Subroutine UPDATQ
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Fig. 3.9
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(Continued)
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Fig. 3.9
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(Continued)
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For each residue {0~ cycle) the MAIN program calls the subroutine
PULSEQ once to generate NDELAY samples of signal using the starting phase
picked by MAIN for the first sample of the first residue. For each sub-
sequent sample the phase is incremented by

9 Doppler frequency
Pulse Repetition frequency | °

If clutter is to be added, NDELAY out of NPULSE samples of clutter gen-

erated by UPDATQ are utilized. For the next cycle the next consecutive
;et of NDELAY samples are used. The flow chart for PULSEQ is shown in

ig. 3.10.

The subroutine FILTNQ simulates the fixed-window non-recursive MII
filter being used. FILTNQ is used for both the in-phase and the quadra-
ture channel filtering. As can be seen from the flow chart in Fig. 3.11,
it makes use of the subprograms IAD, MUL, ITREX, ADD and MAGNF for all
the computations. IAD conveirts the analog signal sample provided by
PULSEQ to a two's complement number, MUL multiplies it by the respective
quantized filter coefficient, ITREX truncates and expands the product,
ADD accumulates NDELAY such products and finally MAGNF gives the magnitude
of the filter accumulator after NDELAY additions. FILTNQ also counts the
number of A/D saturations and the number of addition overflows.

The function subprogram IRMSA is flow charted in Fig. 3.12 and im-
plements the hardware RMS approximation algorithm. The algorithm is out-
lined by Equation 2.2.

The integrator simply accumulates the RMS outputs and is implemented
by the MAIN program by using ADD.

3.1.3 Suggestions for Improvement

From the point of view of increasing the speed and efficiency of
computation the following improvements in the simulation package are in
order:

1) Since SYARTQ is used once only in the entire simulation
of NDWEL dwells and does not perform a repetitive task
it ought to be eliminated as a subroutine. By making it
a part of the MAIN program the time lost in calling
STARTQ and transferring all the parameters read and com-
puted by STARTQ to MAIN can be saved.

2) STARTQ and UPDATQ generate Gaussian random samples and
convert them to clutter samples even when clutter is not
to be used in the simulation. The time lost in this can
be saved by bypassing these steps if clutter is not to
be used.

3) Presently STARTQ generates 1024 Gaussian random samples
and for each dwell UPDATQ tests if more are necessary
and if so generates 1024 more samples. A better way
would be to generate the exact number of sampies neces-
sary for each dwell by UPDATQ itself.
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Input Variables: NDELAY,
JADCLU, ICLUT, PHASE, CI,
cq, FDOP, DELT, AS, BS,
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IDEL = 0
IDEL = IDEL + 1
ICLUT = ICLUT + 1

PHASE = PHASE +
2 . *P[*FDOP*DELT

Compute DPHASE from PHASE
0 < DPHASE < 2 - *PI

'

Define CAS for I channel
and define DA3 for Q
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CAS*COS (DPHASE)
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DAS*SIN(DPHASE)

XQ( 1DEL)

Fig. 3.10 Flow Chart for Subroutine PULSEQ
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Fig. 3.11 Fiow Chart for Subroutine FILTNQ
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Truncation and Expansion of Product

IMT = ITREX(IMUL, LEVELM,
LEVELT, LEVELF)

Accumulation l

CALL ADD(IACC, IMT, IACC,
IACOFL, LEVELF)

l
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No
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Find the
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filter output
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l

Output Variables: INRMS,
NSAT, NACOFL

Fig. 3.11 (Continued)
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Fig. 3.12 Flow Chart for Function Subprogram IRMSA
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RETURN
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4) The subroutine ANIT is used to set up an initial value
when RANDM is called for the first time. There is no
need for a special routine for this purpose, it can be
incorporated in UPDATQ itself.

The above suggestions were incorporated in a trial program and did
result in a considerable saving of computer time for a typical run. They
were not made a permanent feature of the fixed-point simulation package
but were utilized while constructing the floating-point simulation pack-
age.

3.2 DISCUSSION OF SIMULATION RESULTS

The effect of different host computers on the simulation results is
discussed briefly in Section 3.2.1. In Section 3.2.2 simulation results
obtained with the UNIVAC 1110 system are presented graphically. Finally,
a comparison is made between the theoretical results of Chapter 2z and the
simulation results presented in this chapter.

3.2.1 Simulation Results from Different Host Computers

The original fixed-point filter sinulation program was developed by
the UAH Communications Group [14] on an unknown computer system. After
that the program was modified to accommodate quantization error study [8]
and used to obtain results on a CDC-3600 computer system. On this system
the program used a canned routine RANF to generate uniformly distributed
random phase values. When the program was made compatible with the
UNIVAC 1110 system another canned routine RANDU was used for the same
purpose. The starting value and the 1isting for RANDU appear in Appendix
E. Apparantly RANF had a built in starting value but its listing was un-
available, <o any differences between the two could not be compared. The
effect of this was seen primarily in the number of A/D converter satura-
tions when clutter was added to signal samples. This made for some small
but significant changes in the results. Also, it is conjectured that the
software algorithims used by the two systems for calculating library func-
tions such as sine, cosine (which are very important for signal genera-
tion), log, etc., differ in accuracy and make for some changes in the re-
sult. However, the results from the two systems followed the same trends
very closely. The minor deviations were observed at

1) extremely low doppler frequencies,

2) doppler frequencies very close to half the pulse
repetition frequency, and

3) very small truncated product bit-lengths.

A detailed comparison can be made hy comparing the results documented in
reference [8] and those in the next section.
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3.2.2 Graphical Presentation of Simulation Results

Simulation results were obtained for the sets of nine and five fil-
ter coefficients shown in Table 3-2. Results for the nine coefficient
case are discussed first,

YABLE 3-2
FILTER COEFFICIENT SETS

9 - Tap 5 - Tap
- 0.159480 - 0.280040
- 0.089430 - 0.163400
- 0.105110 0.888680
- 0.115390 - 0.163400

0.940430 - 0.280040
- 0 115390
- 0.105110
- 0.089430
- 0.159480

The average error for the hardware RMS and perfect RMS implementations
as a function of doppler frequency are plotted in Fig. 3.13, for three dif-
ferent signal amplitudes and no clutter. The ripple effect in the hard-
ware RMS cases is explained by the fact that the MTI digital filter re-
sponse has local peaks at 750 and 1900 Hz and local minima at 1500 and 2400
Hz. The ripple in the perfect RMS case does not closely correlate with the
filter response curve. Also, the perfect RMS has negative average errors
for some cases while the hardware RMS has positive average error for all
cases. The increase in the magnitude of the average error for extremely
low frequencies in the stopband has not been explained.

Fig. 3.14 presents the variance results as a function of frequency
for the same cases mentioned above. The hardware RMS cases show much more
variation than their counterparts in Fig. 3.13. There is a strong ampli-
tude dependence for the hardware RMS cases while the perfect RMS cases do
not show such a strong amplitude dependence. Note that the perfect RMS
cases are closely grouped together.

The minimum, maximum and average errors are shown in Figs. 3.15 and
3.16 for signal amplitudes of 0.025 and 0.413 volts respectively, with
no clutter and for the hardware RMS algorithm. Note that the moddle of
the extreme values is in general agreement with the average value. This
suggests a symmetrical distribution about the mean for the error proba-
bility density function.

Next, the average error and variance as functions of truncated pro-
duct bit-length MT for the hardware algorithm with a doppler frequency of
1500 Hz, are shown in Figs. 3.17 and 3.18. The cases for five different
signal amplitudes without clutter are shown. It is te be expected that
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with increasing amplitude the ayerage error and especiaily the variance
would increase since the predominant contributor to these is the RMS unit.
The output of the RMS unil increase, with signal amplitude and the error
introduced by it is a ranuom multiplicative error which increases with
the signal amplitude. Note that both positive and negative values of
average error are present and that break points are between product
lengths of 9 and 12 bits. For each signal amplitude in Figs. 3.17 and
3.78 the no clutter and extreme clutter (as explained below) cases are
preseinted in Fig. 3.19 to 3.28. Alternately they give the average error
and variance for the hardware RMS case. Five different signal-to-clutter
pawer ratios were tried, viz., +3.0 d8, 0.0 d&, -3.0 dB, -10.0 dB and
-20.0 dB. For each signal amplitude the most negative ratio that did not
show ary A/D saturations or a very minimal number of saturations was
chosen for presentation. Results from all the other signal-to-clutter
ratios higher than this extreme case were bounded between the no clutter
and extreme clutter cases. It needs to be borne in mind that a total of
45,000 signal plus ciutter sampies are used in a simulation with 500
dwells, 9 coefficients and 5 residues. From Fig. 3.19 to Fig. 3.28 it
1s difficult to generalize about the behavior of the average error curves
as a function of signal amplitude and the relation between the no clutter
and extreme clutter cases. But, the variance curves show a very distinct
trend. For each signal amplitude the variance for the extreme clutter
case is higher than the no clutter case. This seems to be due to the
added contribution of the clutter variance to the RMS output and other
quantization noise variances. The extent of deviation from the no clutter
case is approximateiy of the same order of magnitude except in the cases
of signa) amplitudes 0.200 and 0.413. But, both these cases exhibit some
amount of A/D saturation which is tairly minimal and the curves do follow
the same general trend.

For the case f MT=17 the effect of the signal amplitude on hardware
RMS algorithm average error and variance are shown in Figs. 3.29 and 3.30.
Each figure has fhe no clutter curve as a reference and the excursions due
to different signal-to-clutter ratios are indicated. It is seen that when
clutter does not cause excessive A/D saturations, the clutter cases are
grouped togather and their deviation from the no clutter case decreases
as the signal amplitude increases.

Next, the results for the five coefficient case are presented. Fig-
Jres 3.3 and 3.32 present data similar to the Figures 3.17 and 3.18
which are for the nine coefficient case. The hardware RMS algorithm
average error and variance increase with increasing signal amplitude just
Jike the nine coefficient case. Tie average error again shows both posi-
tive and negative values and the break points are between proauct lengins
of 9 and 13. Th. five coefficient case values arc about zn order of mag-
nitude larger than the nine coefficient case. This is to be expected
since the number of residues in this case is nine as opposed to five in
the previous case and this means an increased number of RMS outputs inte-
grated. Also, 1500 Hz represents a relative minimum in the frequency
vesponse of the nine coefficient filter whereas for the five coefficient
filter it is not a relative minimum and has a higher transfer.

Again Figrres 3.32 to 3.42 present resuits in a manner similar to
that of :igures 3.19 to 3.28 of the nine coefficient case. It is diffi-
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Note: Magnitudes are plotted. Negative values
2.0 b are indicated by x. The dashed lines
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Fig. 3.21 Hardware RMS Average Error as Function of Truncated Product
Bit-length (9-Tap Fixed-Point Simulation Results, Doppler Frequency =
1500 Hz, MXx = MC = 9, MF = ME = 20, MS = 24)
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Fig. 3.22 Hardware RMS Variance as Function of Truncated Product Bit-

length (9-Tap Fixed-Point Simulation Results, Doppler Frequency = 1500 Hz,
MX = MC = 9, MF = ME = 20, MS = 24)
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Bit-1:ngth (9-Tap Fixed-Point Simulation Results, Doppler Frequency =
1500 Hz, MX = MC = 9, MF = ME = 20, MS = 24)
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Fig. 3.24 Hardware RMS Variance as Function of Truncated Product Bit-
length (9-Tap Fixed-Point Sinulation Results, Doppler Frequency = 1500 Hz,
MX = MC = 9, MF = ME = 20, MS = 24)
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Fig. 3.25 Hardware RMS Average Error as Function of Truncated Product
Bit-length (9-Tap Fixed-Point Simulation Results, Doppler Frequency =

1500 Hz, MX = MC = 9, MF = ME = 20, MS = 24)
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MX = MC = 9, MF = ME = 20, MS = 24)
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Fig. 3.27 Hardware RMS Average Error as Function of Truncated Product
Bit-length (9-Tap Fixed-Point Simylation Results, Doppler Frequency =
1500 hz, MX = MC = 9, MF = ME = 20, MS = 24
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Fig. 3.31 Hardware RMS Average Error as Function of Truncated Product
Bit-length (5-Tap Fixed-Point Simulation Results, No C]gtter, doppler
Frequency = 1500 Hz, MX = MC = 9, MF = ME = 20, MS = 24)
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Note: Magnitudes are plotted. Negative values
are indicated by x. The dashed lines
ol indicate positive-negative transitions.
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Fig. 3.33 Hardware RMS Average Error as Function of Truncated Product
Bit-length (5-Tap Fixed-Point Simulation Results, Doppler Frequency =
1500 Hz, MX = MC = 9, MF = ME = 20, MS = 24)

N




Signal Amplitude = 0.025V.
10 ° p—

@
g
(-]
-
-
M
>

No Clutter

I a—

-20.0 dB With Clutter

L1 i | | | ) i | |

8 10 12 14 16
Truncated Product Bit-length, MT
Fig. 3.34 ‘iardware RMS Variance as Function of Truncated Product Bit-
length (5-Tap Fixed-Point Simulation Results, Doppler Frequency = 1500 Hz,
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Fig. 3.35 Hardware RMS Average Error as Function of Truncated Product
Bit-length (5-Tap Fixed-Point Simulation Results, Doppler Frequency =

1500 Hz, MX = MC = 9, MF = ME = 20, MS = 24)
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Tength (5-Tap Fixed-Point Simulation Results, Doppler Frequency = 1500 Hz,
MX = MC = 9, MF = ME = 20, MS = 24)
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Bit-length (5-Tap Fixed-Puint Simulation Results, Doppler Frequency =
1500 Hz, Mx = MC = 9, MF = ME = 20, MS = 24)
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Bit-length (5-Tap Fixed-Point Simulation Results, Doppler Frequency =
1500 Hz, Mx= MC = 9, MF = ME = 20, MS = 24)
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cult to generalize the trends in the averayc error but the variance
curves show a new trend. For each signal amplitude the variance curve
for the extreme clutter case now falls below the no clutter case. This
seems contrary to expectations. It may be due to statistical dependences
between the clutter, the RMS output and other quantization noise giving
rise to some large negative cross-product terms which may cause the clut-
ter case to fall below the no clutter case.

Figures 3.43 and 3.44 present data similar to Figures 3.29 and 3.30
and lead to the same conclusions, i.e., the excursions due to the dif-
ferent signal-to-clutter ratios from the no clutter case decrease as the
signal amplitude increases. Also when clutter does not cause excessive
A/D saturations, the clutter cazes for a specific signal amplitude are
grouped together.

3.2.3 Comparison of Theoretical and Simulation Results

A comparison is made between the theoretical and simulation results
for the following 9-Tap cases (where the doppler frequency is 1500 Hz).

1) Average error and variance as functions of truncated
product bit-length MT for signal amplitudes of 0.025V
and 0.413V.

2) Average error and variance as functions of signal
amplitude with the product hit-length MT = 17.

First, for the signal amplitude of 0.025V, Fig. 3.19 gives the hard-
ware RMS average error as a function of MI. The theoretical upper bound
for this case is shown in Figures 2.4 and 2.5 as the curve corresponding
to ME=20. It is seen that for each value of MT in Fig. 3.19 the simula-
tion results are at least an order of mac-*tude higher than the lower
bound curve. The hardware RMS variance is shown in Fig. 3.20 and the
related bound curves are obtained from Fig. 2.10. The upper bound curve
is essentially the same for all ME>11. For the entire range of MT values
the upper bound has values greater than 0.0008 whereas the simulation re-
sults are all at least two orders of magnitude below this value. The
Tower bound value is identically zero and hence is below the simulation
results.

For the signal amplitude of 0.413V the hardware RMS average ervor
as a function of truncated product bit-length is given in Fig. 3.27. The
corresponding upper bound values appear in Fig. 2.12 as the curve for
ME=20. Alternatively, in Fig. 2.13 the curve for ME=15 is approximately
the same as the curve for ME=20. For values of MT from 8 to 12 the upper
bound curve is several orders of magnitude higher than the simulation re-
sults but, for values of MT from 12 to 17 the simulation results approach
closely the upper bound value but are always smaller than the bound. For
MT=17 where they are the closest the upper bound value is approximately
0.03 whereas the simulation value is 0,0135. Figure 2.14 shows a lower
bound average error curve for which ME=MT+3. This condition ensures that
no residue truncation error is produced 2t the integrator output. Conse-
quently, this curve can be used to compare to the simulation value of ME=
20. It is seen that the lower bound curve is lower than the simulation
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results by a little less than an order of magnitude. The hardware RMS
variance is shown in Fig. 3.28 and the related bound curyes in Fig. 2.16.
The upper bound curve (same as that for ME=9) is about three orders of
magnitude higher than the simulation results. The lower bound is identi-
cally zero and hence below the simulation results.

Next, the comparison is made for the error results with yarying
signal amplitudes. The simulation results are for MT=17 and ME=20. The
hardware RMS average error is shown in Fig. 3.29. Figures 2.19 and 2.20
show bound curves for MT=13 and ME=16 and are very close to the bound
curves for MI=17 and ME=20. It is seen that for Tow signal amplitudes
the simulation results are about an order of magnitude below the upper
bound. However, as the signal amplitude increases the simulation resulis
converge towards the upper bounds. At the closest point the upper bound
value is approximately 0.03 whereas the simulation value is 0.0135. The
lower bound curve stays at least an order of magnitude below the simula-
tion results, These observations hold for the simulation results with
and without clutter. A similar comparison for the variance values can be
made with the help of the simulation results of Fig. 3.30 and the bound
results of Fig. 2.21. The upper bound curve is at least three orders of
magnitude higher than the no clutter simulation curve. The simulation
results with clutter also fall below the bound curve with the exception
of one case, viz., signal amplitude of 0.300V and signal-to-clutter power
ratio of -10.0 dB. This is accounted for by the fact that a large number
of A/D saturations occurred. The variance lower bound is identically
zero, thus it bounds all the s.iulation results.
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CHAPTER 4

FLOATING-POINT AND BLOCK~FLOATING-POINT PROCESSORS
by Brian P. Holt

4.1 GENERAL FLOATING-POINT CONSIDERATIONS

In fixed-point realizations of the moving target indicator (MTI)
portion of the DSP system it is convenient to think of the numbers as
fractions. The product of two numbers is then also a fraction and the
least significant bits of the product can be truncated or rounded to
maintain a given word length, The result of an addition need not be
truncated or rounded to maintain the word length; however, it is possible
that the sum exceeus unity in which case an overflow has occurred. Thus
it is essential to scale the inputs to the MTI by an appropriate factor
to insure that overflows do .wt occu: or, conversely, to use processor
word lengths based on maximum allowable input values.

The dynamic range limitations of a fixed-point MTI processor can be
overcome by using floating-point arithmetic. In the followiny sections
floating-point representation of binary numbers is intrcduced and the
operations required to implement floating-point arithmetic are examined.
The focus of thz discussion is on signed magnitude, one's complement and
two's complement schemes. Other notations are discussed only if they
may offer significant advantages in performing a particular operation.
It is assumed that the reader is fami,'ar with signed magnitude, one's
complement and two's complement numbers a- discussed in the Titerature
[17,18]. In the following discussion the most significant digit (MSD) of
each binary numbey is the sign bit.

4.1.1 Representing Floating-Point Numbers
A binary number is expressed in floating-point form as
M. 20

where M, the mantissa, is a positive or negative real number and C, the
characteristic (often called the exponent), is an integer. Using this
broad definition, a given number can have several floating-point repre-
sentations. For example, the decimal number +0.75 could be represented
as follows.

BINARY NUMER INTERPRETATION
0.10, - 2 £3/8 + 1 = +3/4
0.011, - 2! +3/8 + 2 = 43/4

01.100, « 27! ¥3/2 + 12 = +3/4
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In signal processing applications it is conyenient if the mantissas
of floating point numbers are fractions. When a multiplication of two
numbers is performed (by multiplying the mantissas as fixed-point frac-
tions and adding the characteristics) the mantissa of the result is a
fraction (the location of the radix point is fixed). Truncation or round-
ing of the product is done by truncating or rounding the appropriate
number of bits from the mantissa just as if it were a fixed-point frac-
tion. Truncation and rounding introduce errors in the floating-point
representation of a number. (For a discussion of the statistics of trun-
cation and rounding errors in floating-point numbers see Appendix C.)

The magnitude of the resultant error is minimized if the floating-point
number is ‘normalized', as described in the following section, before
the truncation or rounding takes place.

4.1.2 Normalizing Floating~Point Numbers

A floating-point number is said to be normalized if

V2 <M <1, (4.1)

Thus, a floating-point number is normalized by multiplying or dividing
the mantissa by 2 until its magnitude falls within the desired range.

By adding 1 to the characteristic for each division by 2 and subtracting
1 for each multiplication, the overall value of the floating-point num-
ber is preserved. Table 4-1 shows fixed-point and normalized floating-
point representations of fractions in signed magnitude, one's complement
and two's complement notation. In the table, both the mantissa and the
characteristic of each floating point number are represented in the same
notation, i.e., signed magnitude, one's complement, etc. This need not
be the case. Often, hardware requirements can be reduced by using one
scheme for representing the mantissas and another for representation of
the characteristics.

According to the definition given above, the floating-point repre-
sentation of zero can never be normalized. However, it is often con-
venient to establish the convention that the floating-point representation
of zero is nomalized by setting the characteristic to the most negative
value it can have. The reason for this is made clear in Section 4.1.4.

Shifting the bits of a binary number left one position relative to
the radix point is equivalent to multiplying the number by 2 and shifting
them right one position is equivalent to dividing by 2. Thus, normaliza-
tion can be accomplished by shifting the bits of the mantissa left or
right the appropriate number of positions and adjusting the characteris-
tic accordingly. If the mantissas of the numbers used are fractions, a
right shift is needed only when the result of an addition overflows into
the least significant integer position. Thus, at most one right shift
is needed and the sign bit then would occupy the vacated integer bit
position.

The algorithm for normalization of positive floating-point numbers
in all three notations of Table 4-1 is as follows.
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1. Shift the mantissa right or left until the

: most significant 1 is to the immediate right
¢ of the radix point.

1 2. Increase the characteristic by 1 for a right
; shift and decrease it by 1 for each left

' shift.

3. When the mantissa is shifted left a 0 is
brought into the vacated LSB position and any
0 shifted into the integer portion of the
mantissa is dropped.

v or negative numbers the algorithm used for normalization depends upon
the notation being used. Signed magnitude negative numbers are normal-
ized using the same algorithm used for positive numbers if we interpret
the ohrase "most signi?icant 1" to mean the most significant 1 excluding
the sign bit.

The rules for normalizing negative one's complement numbers are
summarized as follows.

1. Shift the mantissa right or left until the
most significant 0 is to the immediate right
of the radix point.

2. Increase the claracteristic by 1 for a right
shift and decrease it by 1 for each left
shift of the mantissa.

3. When the mantissa is shifted left a 1 is
brought into the vacated LSB position and
the 1 which was moved to the left of the
radix point is dropped.

The algorithm for normalizing two's complement negative numbers feol-
Tows.

1. If the magnitude of the mantissa is a positive
or negative integer power of 2, shift the man-
tissa so that the most significant 1 (excluding
the sign bit) which has a 0 to its immediate
right is to the right of the radix point. If
trne mantissa contains only zeros shift right one
position and bring a 1 into the vacated MSB
position.

2. If the magnitude of the mantissa is not an
integer power of 2, shift the mantissa so that
the most significant 0 is to the right of the
radix point.

3. Increase the characteristic by 1 for a right
shift of the mantissa and decrease it by 1 for
each left shift.

4. When the mantissa is shifted left, any bit
shifted past the radix point is dropped and a
0 is brought into the vacated LSB position.
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The hardware for normalizing two's complement negative numbers is
comlicated by the fact that tke algorithm used depends upon the magni-
t' u2 of the mantissa. By changing the rules for normalization of nega-
tive two's complement numbers this complication can be eliminated.

The definition of Equation (4.1) shall be changed for negative two's

5 wnitn P,

complement numbers so that

172 < |M] < 1. (4.2)

This new definition makes use of the fact that the decimal number -1 can
be represented as a two's complement fraction (see the fixed-point
representations of Table 4-1). Using Equation (4.2) the rules for nor-
malizing negative two's complement numbers are as follows.

1. Shift the mantissa rignt or left until the
most significant 0 is to the immediate right
of the radix point.

2. Increase the characteristic by 1 for a right
shitt and decrease it by 1 for each left
shift o7 the mantissa.

3. when the maniissa is shifted left a 0 is
breught into the vacated LSB position and
the 1 which was moved to the left of the
radix point is dropped.

Table 4-2 shows the two's con~lement fixed-point and normalized floating-
point representation of number: based on Equation (4.2).

For the remainder of this chapter and in the floating-point simula-
tion described in Chapter 6, negative two's complement numbers are nor-
malized using the alternative algorithm based on Equation (4.2).

4.1.2 Multiplication

Multiplication of floating-point numbers is accomplished by taking
the product of the mantissas of the two operands just as if they were
fixed-point numbers and summing the characteristics. It is not neces-
sary that the numbers to be multiplied be normalized but, as pointed out
previously, it is cesirable that the mantissas be fractions. If the :wo
numbers are normalized, however, the mantissa of the product will be a
fraction between 1/4 and 1 (except of course when either or both of the
operands are zero) and normalization of the result would never require a
right shift and at most one left shift of the mantissa.

4.1.3 Addition

Addition of positive and negative numbers in signed magnitude nota-
tion is complicated by the fact that both binary adders and subtractors
are required. Additional circuitry is also necessary for determining
the sign of the result. The use of one's complement or two's complement
numbers allows addition and subtraction operations to be carried out
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4
E - TABLE 4-2  ALTERNATIVE TW0'S COMPLEMENT REPRESENTATION
Fraction 2's Comp. Fixed-Point 2's Coma. Floatigg-Point
i /8 3,111 0.111 000
? 6/8 2.110 0.110 000
£ 5/8 0.101 0.101 000
4/8 0.100 0.100 000
3/8 0.011 0.110 m
2/8 0.010 0.100 m
1/8 0.001 0.100 110
+0 G.000 0.000 100
-0 ememe eeme- - o
-1/8 1.1 1.000 101
-2/8 1.110 1.000 110
-3/8 1.101 1.010 m
-4/8 1.100 1.000 m
-5/8 1.011 1.01 000
-6/8 1.010 1.010 000
-7/8 1.001 1.001 000
-8/8 1.000 1.000 000

110




TEON L T

using only adder circuitry. Furthermore, the sign of the result is de-
termined as a part of the additiun process. Thus the DSP would use a
complement system and this section is devoted to explaining floating-
point addition using one's complement and two's complement notations.

Fioating-point numbers are added by summing the mantissas as if
they were fixed-point numbers. Recall that in adding two fixed-point
binary numbers, the radix points are first Tined up su that bits with
equal weights, or positional coefficients, are added together and carries
are propagated to the column with the next higher weight. By shifting
the mantissa bits of the twe floating-point numbers so that the charac-
teristics are made equal, the bits in corresponding columns of the man-
tissas have equal weights and can be added correctly. This process of
shifting the mantissa hits and adjusting the characteristics is called
'aligning' and js explained in Section 4.1.4. Once the two numbers are
aligned and the mantissas added, the characteristic of the sum is set
equal to the characteristics of the aligned numbers.

When one's complement or two's complement numbers are added, the
sign bits are treated as nart of the arithmetic portion of the operczuds
as illustrated by the following examples. Notice that in one's comple-
ment addition a carry propagated out of the sign bit column is added to
the least significant bit of the sum and any carries thzreby generated
are propagated forward. This peculiarity of one's complement addition is
called 'end-around carry'.

Case 1: Addition of a posi*ive and . negative number never results in
averflow.

Example 4-1:

No overflow

One's Complement Decimal Two's Complement
1.1101 ~2/16 1.1110
+ 0.0001 +1/16 + 0.0001
0)1.1110 0)1.1n
Lo o
1.1110 -1/16 1.1
Example 4-2: No overflow
One's Complement Decimal Two's Complement
1.1101 -2/16 1.1110
+ 0,1000 8/16 + 0.1000
1)0.0101 1)0.0110
. 1
0.0110 16/16 0.0110

[N




Case 2: Addition of two positive numbers results in overflow if the sign
bit of the result is 1.

Example 4-3:

One's Complement

0.1100
+ 0.0010

0)0.1110
0

0.1110

Example 4-4:

One's Complement

0.1100
+ 0.101

0)1.0111
Lo o

01.0111

No overflow

Decimal

+12/16
+2/16

+14/16

Overflow

Decimal

+12/16
+11/16

+23/16

Two's Complement

0.1100
+ 0.0010

0)0.1110

0.1110

Two's Complement
0.1100
+ 0.101

0)1.0111

G1.01M

Case 3: Addition of two negative numbers results in overflow if the sign
bit of the result is 0.

Example 4-5:

One's Complement

1.1110
+ 1.1101

1)1.101

L

v ———

1.1100

Example 4-6:

One's Complement

1.0011
+ 1.1010
1)0.1101
L= ]
10.1110

No overflow

Decimal

-1/16
-2/16

-3/16

Overflow

Decimal

-12/16
-5/16

-17/16
12

Two's Complement

1.1
+ 1.1110
1)1.1100

1.1101

Two's Complement

1.0100
1.101

1)0.11M
0.1 N
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When an overflow occurs in the addition of two floating-point man-
tissas as in Examples 4-4 and 4-6, the carry out of the sign column of
the two operands then becomes the sign of the result. The result is then
normalized by shifting the resultant sum to the right and ircreasing the
characteristic as explained in Section 4.1.2. If overflow did not occur,
it is possible that the mantissa will have to be shifted left and the
characteristic decreased until the magnitude of the mantissa is in the
appropriate range.

Another well known algorithm for detecting overflows in additions
involves comparing the carries into and out of the sign bit column [17].
If the two carries are not equal, then an overflow has occurred.

4.1.4 Aligning Floating-Point Numbers

In Section 4.1.3 it was stated that floating-point numbers must be
aligned prior to addition. In the following discussion it is assumed
that the two numbers to be aligned are in normalized form. (Although
this is not strictly necessary, it greatly simplifies the alignment

algorithm,)
The rules for aligning twu (normalized) floating-point numbers are

listed below.

1. The mantissa of the number wits the smaller
characteristic is shifted right {and its
characteristic increased) by the number of
bit positions erqual to the difference in the
two characteristics.

2. For one's and two's complement mantissas the
MSB position vacated b a right shift is
filied by a bit equal tn the sign bit, i.e.,
a 0 for positive numbers and a 1 for negative

numbers.

Table 4-3 gives several examples of the alignment process for both
one‘'s complement and two's complement notation. Notice that each time
a mantissa is shifted right the LSB is truncated to maintain the original
word length. Parts (g) and (h) of Table 4-3 are included to illustrate
the motivation for normalizing the floating-point representation of zero
by setting the characteristic to the lowest value it can have (see
Section 4.1.2). This jasures that when two floating-point numbers are to
be aligned, and one of them is zero, the mantissa of the nonzero number
will not be shifted {causing truncation errors) since its characteristic

cannot be the smaller of the two.
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4.2 GENERAL BLOCK-FLOATING-POINT CONSIDERATIONS

The motivation for using floating-point arithmetic in reaiizing the
MTI portion of the DSP is to overcome the dyramic range limitations of
fixed-point svstems. Implementing floatiig-point arithmetic, however,
significantly increases the complexity of the processor hardware. An
alternative realization, block-floating-point, is a hybrid approach which
has some of the advantages of both fixed-point and floating-point struc-
tures. Oppenheim [19] has proposed and evaluated a structure for imple-
menting recursive digital filters using block-floating-point arithmetic.
His results, however, are not generally applicable to the fixed-window
MTT structure used in the radar signal processor.

In block-floating-point arithmetic all of the intermediate values
are jointly normalized, i.e., they all have the same characteristic.
This is accomplished by sh.iting the bits of each number left one posi-
tion at a time until any one of the numbers is normalized according to
the rules of Section 4.1.2. The following tatle illustrates how several
positive numbers are jointly normalized.

JOINTLY NORMALIZED RESULT

ORIGINAL FIXED-POINT NUMBER MANTISSA CHARACTERISTIC
0.00111 0.01110 -1
0.00011 0.00110 -1
0.01010 0.10100 -1
0.00010 0 00100 -1
¢.01100 0.11000 -1

The arithmetic operations of addition and multiplication are performed
in fixed-point arithmetic using the jointly nomalized mantissas. The
characteristic is then used to scale the fixed-point output to give the
final fixed-point resuit.

This joint normalization scheme appears to be particularly applicable
in schemes where a large number of intermediate results are stored and fed
back simultaneously. However, in the case where only one intermediate re-
sult is to be stored, such as in the fixed-window, multiple range bin MII
(where cnly one intermediate result is stored per range bin) it does not
offer an, significant advantages over floating-point realization. For
this reason, a hardware realization for a block-floating-point MTI pro-
cessor has not been proposed.

4.3 DESCRIPTION OF PROPOSED FLOATING-POINT PROCESSOR

In this section a floating-point configuration for realizing the
digital signal processor described in Section .1 is proposed. Block
diagrams of the three major system divisions, viz., 1) the I and Q chan-
nel filters, 2) tne RMS approximation circuit and 2) the post residue
integrator are presented and discussed. General requirements for imple-
menting the various subtasks are discussed but a detailed hardware design

-—
-t
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is not attempted.
4.3.1 Floating-Point Filter

Figure 4.1 shows a block diagram of the proposed floating-point im-
plementation of the I channel filter of the DSP (the Q channel is identi-
cal). The A/D converter outputs are in two's complement fixed-point form
as described in Section 3.1.2 and are supplied at a 5 MHz rate. The coef-
ficient mantissas are stored as 9 bit two's complement fractions. The
coefficient characteristics are stored. in magnitude form (no sign bit is
needed) since they will always be zero or negative. This is a result of
the requirement that the MTI filters have unity noise gain, i.e., the sum
of the squares of the coefficients is one [10]. Thus the coefficient val-
ues would all be less than one.

A correction circuit is used in corjunction with an 8 by 8.bit binary
multiplier to perform two's complement :ultiplication. This same multi-
plier scheme is presently used for muitiplication in the fixed-point pro-
cessor at the Radar Technology Branch, U.S. Army Missile Command [1]. The
output of the multiplier is normalized prior to truncation in order to
minimize the magnitude of the truncation error.

Throughout the fleating-point processor , truncation is used (instead
of rounding) when word lengths are reduced. Since rounding the mantissa
of a floating-point number could result in an overflow, extra hardware
would have to be included to normalize the result.

The product can be normalized in two ways as shown below.

1. Serial Approach
Load the mantissa into a parallel access serial shift
register and compare the most sigrifirant fractional
bit with the sign bit. If the most significant frac-
tional bit is equal to the sign bit the mantissa bits
are shifted left one position and the characteristic
is decremented by one. The compare and shift operation
is then repeated untii the most significant fractional
bit does not equal the mantissa sign bit.

2. Parallel Approach
The mantissa bits are loaded into a position scaler,
i.e., a shifting circuit which can shift the bits any
number of positions in one operation (for example the
Signetics 8243 Pasition Scaler). The number of bit
position that the mantissa is shifted must be determined
by a circuit (such as ROM or PLA for example) which
counts the number of consecutive leading zeros in the
mantissa if the sign is positive and the number of con-
secutive one's if the sign is negative.

The serial approach would require considerably less hardware than
the parallel aporoach. However, if the number of snifts needed for nor-
malization is large, the serial test and shift would have to be done at
high speed. For example, if 8 shift and test operations are required for
normalization in the serial approach, and normalization must be accom-
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plished in a maximum of 200 nanoseconds, then the test and shift opera-
tion would have to be accomplished at a 40 Miz rate.

The control block of Figure 4.1 calculates the difference in the
characteristics of the normelized product and the partial sum fed back
from the range bin accumulators. vontrol signals are then fed to the
alignment circuits and the characteristic of the sum is set equal to the
larger of the two characteristics. Shifting of the mantissas in the
alignment process can be done using a serial shift register or a position
scaler. If the serial approach is used, the same comments apply as those
concerning the normalization circuit speed.

The sum is then normalized (note that a right shift is required if
overflow occurs). The normalized sum is then stored in the range bin ac-
cumulators. After the appropriate number of cycles the two's complement
filter output mantissa is converted to magnitude form then sent to the
RMS circuit described in Section 4.3.2. Conversion of negative two's
complement numbers is accomplished by complementing each bit and adding
1 to the result. Special precautions are necessary to insure that the
two's complement mantissa representation of -1 is converted correctly.
For example, if the mantissa of the filter output was the two's comple-
ment number 1.0000 (-1 in decimal), then complementing each bit and add-
ing 1 would give the same two's complement number as a result. The cor-
rect magnitude would be obtained by shifting the mantissa bits right one
position (just as is done when an addition overflows) and increasing the
characteristic.

4.3.2 RMS Approximation Circuit
A block diagram of the proposed floating-point RMS approximation cir-
cuit is shown in Figure 4.2. The algorithm implemented is the two sector

approximation described in Section 2.1. The nomenclature of Table 4-4 is
used in the following discussion.

TABLE 4-4 RMS UNIT NOMENCLATURE

SYMBOL DESCRIPTION
| 1] Magnitude of the I channel
filter output (normalized)
1Q] Magnitude of the Q channel

filter output (normalized)
L The larger of |I| and |Q!
S The smaller of |I| and |0]
M Mantissa of L (always positive)

!
Mg Mantissa of S (always positive)
CL Characteristic of L
CS Charactaristic of S
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|1] and |Q| are simultaneously fed to the |I| and |Q| comparator and
the L and S gates. The comparator generates signals which cause L and
to pass through the appropriate gates. Cg is then increased by 1 (which
in effect multiplies S by 2) and a second comparison is made. The result
of the second comparison controls the functioning of the L and S compo-
nent blocks. If L > 25, then M_ is unchanged and 3/16 Mg is generated.
If, however, L < 2S, then 3/4 M, and 11/16 Mg are generated.

Two different approaches céuld haye been taken in generating the L
and S components as illustrated below.

Approach 1: Generate the components by operating only on the mantissas

of L and S.
COMPONENT TO BE GENERATED METHOD
M C
3/16 S (MS + MS/Z)/B CS
11/16 S ((MS + MS/Z)/4 + MS)/Z CS
3/4 L (ML + ML/Z)/Z CL

Approach 2: Generate the components by operating on both the mantissas
and characteristics of L and S.

COMPONENT TO BE GENERATED METHOD
M C
3/16 S MS + MS/Z CS -3
11/16 S (MS + MS/Z)/4 + MS CS -1
3/4 L ML + ML/Z CL -1

The first approach was chosen since it requires less hardware to implement
than the second approach. Normalization of the results of the first ap-
proach would also be simplified since none of the mantissas could overflow.
This is not true of the second anproach,

Since |14 and |Q| are in normalized form, normalizing the scaled L
componen. will involve at most one left shift. Similarly, normalization
of the scaled S component would take at most three left shifts. Thus,
normalization could be done serially in a limited amount of time since
only a small number of shifts are involved. The alignment of the scaled
L and S components is accomplished in the same manner as the alignment
process described in Section 4.3.1.

Since M_ and Mg are always positive, their sum is in normalized form
unless an overflow occurs. Consequently, normalization of the sum would
involve at most a right shift of one position. After normalization, the
RMS output is sent to the post residue integrator.
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4.3.3 Post Residue Integrator

The floating-point pnst residue integrator block diagram is shown
in Figure 4.3. Tihe inputs from the RMS unit are normalized positive
floating point numbers. The control and alignment blocks function in the
same manner as the control and alignment blocks of Figure 4.1. Since the
numbers to be added are always positiye, the sum needs to be normalized
only if an overflow occurs. _

After the required number of integrat.ons, the output of the inte-
grator is sent to tie threshold detector. The threshold detector indi-
cates the presence of a target if the integrator output exceeds the pre-
set threshold value.

4.4 ALTERNATIVES

Several alternatives are available for realizing the floating-point
MTI signal processor described in Section 4.3. Several of these alterna-
tives and their effect on the hardware complexity are considered below:

1. The I an Q channel filter outputs could be converted to
fixed-point numbers and the RMS approximation and post
residue integration could then be realized using fixed-
point arithmetic. This configuration would allow the
use of floating-point coefficients (thus reducing the
quantization eirror in the coefficients) but would require
less hardware than a complete floating-point system. For
example, of the six circuits of Figure 4.3 only the adder
and accumulator circuits would be required if fixed-point
arithmetic were used for the post residue integration.
Furthermore, six of the circuits in Figure 4.2 would be
eliminated (three normalize circuits, two align circuits,
and the control circuit). This reduction in circuit com-
plexity would outweigh the added circuitry needed for the
conversion from floating-point to fixed point numbers.

2. The nomalizing and aligning circuits could be combined.
Since both the normalizing and aligning processes involve
shifting of the mantiss2 bits of the floating-point num-
bers, one bidirectional shift circuit could be configured
to perform both operations. The complexity of the control
circuitry would Le increased and wou'd be strongly depend:nt
on the number of bits used in the mantissas and characteric-
tics but a net savings in hardware might be achieved.

3. Fixed-point coef<icients could be used. The hardware re-
quired for determining the characteristics of the products
in the I and Q channel filters would be simplified if fixed-
point coefficients were used. In this configuration, the
characteristic of the normalized product would be equal to
the negative of the number of left shifts performed in the
normalization. No sign bit would be recuired for the character-
istic of the product since it would always be < Q.
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The floating-point simulation described in Chapter 6
has an option which allows the use of fixed-point coef-
ficients. Therefore, simulation runs could be made to
determine the processor error performance for fixed-
point and floating-point coefficients. These results
would provide a basis for evaluating this alternative
configuration.

4. Time multiplexing could be used to reduce the hardware
complexity. Since the I and Q channel filters are
identical, it would be possible to reduce hardware re-
quirements by time-charing some circuits. For example,
one circuit could periurm the magnitude conversion at
the output of both the I und § filters. It might be
pessible to multiplex other circuits such as the align-
ment control. Here again, the hardware tradeoffs are
strongly dependent on the word lengths necessary.

In most cases, the hardware complexity of the circuits is strongly
dependent upon the word lengths necessary to achieve a specified error
pe-formance. As the word lengths grow, a threshold is croussed where time
constraints no longer allow serial operation. At that ooint, the com-
plexity of the hardware rises significantly.

4.5 COMPARISON OF HARDWARE COMPLEXITY

The relative complexities of the hardware required to implement the
fixed-point and floating-point versions of the MTI portion of tie radar
signal processor vary with the particular configurations used. However,
the following general statements can bhe made:

1. The hardware required to implement the floating-point
processor is approximatcly £ to 5 times gre ‘er than
thar required in the fixed-point version.

2. The complexity of the floating-point hardware can be
reduced by approximately 1/4 if the mantissa bit lengths
are short enough that the aligning and normalizing opera-
tions can be done seriaily.

3. The amount of memory required for the fixed-point and
floating-point systems is about equal. Preliminary simu-
lation runs seen to indicate that fixed-point and floating-
point processors with similar error performance require
approximately equal word lengths (where the floating-point
word length is the total bits used in the mantissa and
characteristic). .

More simulation runs nced to be made in order to determine the bit
lengths required at various points in the floating-point processor that
are necessary to achieve specified error performance. Once these bit
lengths are known, an accurate comparison of the actual integrated circuit
chip counts necessary for the fixed~noint and floating-pnint systems can
be made.
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CHAPTER 5

THEORETICAL ANALYSIS OF FLOATING-POINT PROCESSOR
by Jerry D. Moore

5.1 OUTLINE OF ANALYSIS

The theoretical analysis of the floating-point DSP quantization
error is presented in this section. A system configuration as described
in Chapter 4 is used for the analysis. The pattern established in
Chapter 2 for the fixed-point processor is followed here, i.e., an out-
line is presented with the detailed derivations presented in an appendix.

The finite word lengths used in the DSP are identified in Fig. 5.1
and summarized in Table 5-1. It is important to notice that the A/D
converter has a fixed-point output containing MX bits, as was used in
the fixed-point analysis of Chapter 2. This choice was based on the
availability or fixed-point A/D converters and the limited access to
floating point A/D converters.

The output of the digital filter, w() is written as the sum of an
errorless output y() and the quantization error g(), i.e.,

w(mN) = y(mN) + g(mN) , (5.1)
where

N-1
y(mN) = % h(n) x(mN - n), (5.2)
n=0

The N filter coefficients are represented by h() and the input samples by
x(). In Appendix C it is shown that

N-1
g(mN) = = h(n) [(6y_y_, = 1) x(mN - n)
n -0 N-1-n (5.3)

+ GN_1_n e(mN = n)] .

The o terms are the statistical parameters used to relate the floating
point quantization errors. An expression for this term is given in
Appendix C.

An expression for the output of the RMS unit (cf., Chapter 2
Equation (2.7)) is

r(mN) = [T+ v (nN)] w7 (nN) wQ‘(mN) . (5.4)
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TABLE 5-1
FLOATING POINT DSP WORD LENGTH

T

Symbol Jescription
; MX A/D Converter fixed-point word length. Two's
E complement form with 1 sign bit and MX - 1

fractional bits,

MCM Coefficient mantissa word length. Two's complement
form witn 1 sign bit and MCM - 1 fractional bits.

MCE Coefficient exponent word length, The exponent
is in integer form and will always be negative,
thus no sign bit is required.

MM Truncated product mantissa word length. Two's
cumplement form with 1 sign bit and MTM - 1
fractional bits.

MTE Truncated product exponent word length. Two's
complement integer form with 1 sign bit and MTE - 1
integer bits.

MFM Range bin accumulator mantissa word length. Two's
complement form with 1 sign bit and MFM - 1
fractional bits,

MFE Range bin accumulator exponent word length. Two's
complement integer form with 1 sign bit and MFE - 1
integer bits.

MEM Truncated residue mantissa word length. Magnitude
form with MEM fractional bits. No sign bit is used.

MEE Truncated residue exponent word length. Two's
complement integer form with 1 sign bit and MEE - 1
integer bits.

MSM Integrator accumulator mantissa word length.
Magnitude form with MSM fractional bits. No sign
bit is used.
MSE Integrator accumulator exponent word length., Two's
; *vlement integer form with 1 sign bit and MSE - 1
{ * -eger bits.




This term is truncated and then summed in the integrator to give

M
INT(M) = mzl r(mN) + €t (M), (5.5)

where the truncation and suming quantization error is (cf., Appendix C)

M-1
eint(M) = mEO (erm - 1) r[(m + 1)N] . (5.6)

and 6pp represents the floating-pu'nt error parameters as shown in
Appendix C.

As in Chapter 2, the integrator output can be expressed as an errorless
term, meu, plus an error term, INTE(M), viz.,

INT(M) = M u + INTE(M) . (5.7)
The average integrator output error is

M
INTE(M) = ¢ T+ E}nt(M) -Mu. (5.8)

m=1

It has been shown in Appendix C that the variance of INTE() is equal to
the variance of INT() and that

M-1

2
= T - 2 2
PINTE [M+2 mEO (erm 1] O ¥ %nt (5.9)

From (5.6) it follows that

M- 2 2
Fhae = 5 (= 107 PG TNT - 6, =17 7+ TN )
M-1 M-1
€ .= (- “TWm+TIN =7 = (5. -1), (5.0
Mt g ™ m=g ™

2% Laxa W}ﬂ

P trwes




A bounding procedure "~ necessary to evaluate 7 and r2, cf., (2.15),

(2.16), (2.17), and (2.18), i.e.,

(1 + ?Q) fu-v] <r<(1+ ?&)(u +V),
where

el sz g,

and

T+ 2 WV < 7 < TRy 7 W v)e

After manipulation and use of (5.12)

Fe(l+T)u+\V2 ),
Foos [T+ 7 ) u-J2el, (0 + ) u- 213,

Vo TTFv7 (u /28002

¥ TTF )7 (u -2 99)?,

where SM[ ] indicates the smallest of the set.
It follows that

P
in
R
!
ro

max ~ ¥ min
and

°r2 Z-LA[(FTmin - Fzﬁax)’ 0] ,
where LA[ ] indicates the largest of th

The determination of the average v
(5.8) and (5.9) through the use

e set.

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

15.17)

(5.18)

(5.19)

alue and variance of the error of

of {5.10), (5.14) - (5.19) thus depends
on the evaluation of g and g°.

It is shown in Appendix C that
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AN e @ ) (5.20)
N N-T1-n ™ “N-1-n’ 9

"g":

where A is the peak value of the sinusoidal doppler_input to the filter,
h() represents the filter coefficients, and 6% and 8- represent the
floating point error statistics for positive and negative values of x()
respectively. Also, it is shown in Appendix C that

N-1 N-1

- . A2 - - - —
g = £ £ hin)h(k) (e} -8 ) (5t -9 )
[ N-T-n ™ "N-1-n"""N-1-k © ON-1-KD (5 1)
n#k
. N;‘{hz(n) [ (AZ + _é-z-)('évz'.', + 5-2-_
=0 r T N-1-n N‘]'ﬂ)
n_.

¥ é'z' (v - wﬁ-%n ¥ gﬂ-l-n)]}} .

The 7 is the mean squared value of the quantization error associated
with the input signal x().

Evaluations of the floating-point parameters 6pp and 6, and their
statistical values are given in Appendix C This concludes the analysis
for the floating-point processor. It is possible to predict and upper and
Tower bound on ihe integrator output average error and variance by using
the results of thic section. A computer program was written to implement
the equations of this analysis. The program iisting is given in Appendix
D and was used to obtain the results presented in the next section.

5.2 GRAPHICAL PRESENTATION OF RESULTS

The computer program of Appendix D was used to obtain specific values
for the integrator output error statistics of a ficating-point processor.
As in Chapter 2, the A/D converter word is a fired-point word with MX = 9.
The coefficionts were also treated as fixed-poiny, words with MC = 9. This
choice results in simpler hardware requirements for the processor and
allows a convenient comparison with the fixed-point processor results.

The product truncation length is MT bits with MTM bits for the mantissa.
This quantity, MTM, is varied as is the integrator input word length man-
tissa, MEN. Other word lengths were fixed, viz., MFM = MTM and MSM = MEM
Such choices seem to be justified by hardware considerations. Many other
choices could be made.
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The average error bounds are presented in Fig. 5.2 as a function of
MTM with MEM = 10. The bounds are not tight, but do become closer as the
signal amplitude is reduced. The bounds are not strongly dependent on
MTM for values between 11 and 15. The bounds do not appear to be as de-
pendent on signal amplitude as was the fixed-point processor.

Upper bounds on the error variance are shown in Fig. 5.3 as a
function of MTM with MEM = 10. The lower bound values were either zero
or very small numbers. The variance bounds are dependent on the signal
amplitude, but independent of the MTM values between 11 and 15.

The irtegrator word length effects are demonstrated in Figures 5.4
and 5.5 for MTM = 13. First the 0.125 volt signal amplitude is used
and then 0,413 volts. The variance bounds are almost indepcndent of
MEM, but the average error bounds are strongly dependent on MEM for
values less than 10. The best values of MEM for the upper bounds are
MEM = 8 for 0.125 volts and MEM = 9 for 0.413 volts. The best values of
MEM for the lower bounds are any MEM > 12. Fig. 5.6 is an expanded ver-
sion of the variance upper bound versus MEM with MTM as a parameter
family. Note that the smaller the amplitude becomes then the less de-
pendency on MTM, e.g., for 0.413 changes are not noticed for MTM > 12,
jor 0.125 volts changes are not noticed for MTM > 10, while for 0.025
volts the resuits do not change for MTM > 9. The reduction in the
variance bounds for low MEM values was rot expected. Even though the
reduction of MEM would appear to produce more variations, th? bound has
a ~anceling effect by reducing the dependence of the residue variance op?.
This effect is not anticipated for the simulation results.

The variance bounds are presented as a function of signal amplitude
with MTM = 13 in Fig. 5.7. There is not a strong dependence on MEM and
the lower bound is zero for values not shown.

The results of this section are compared to the floating-point
simulation results in Chapter 6.

A follow-on analysis using a two-sector approximation RMS error of
0.1265% was made. The results of Fig. 5.7 revealed a maximum decrease by
a factor of 2 at 0.413 volts and insignificant changes for amplitude less
than 0.1 volts.
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CHAPTER 6

FLOATING-POINT SIMULATION PROGRAM
by Bhadrayu J. Trivedi and Brian P. Holt

A FORTRAN program was developed to perform the simulation study of
the fioating-point processor. A description of the program follows in
gection 6.1 and some typical simulation results are discussed in Section

.2,

6.1 DESCRIPTION OF PROGRAM

The floating~point simulation program was patterned after the struc-
ture of the fixed-point simulation program. The suggested improvements
of Section 3.1.3 were incorporated in this program. The technique for
representing the floating-point binary numbers and simulating the arith-
meticai operations was markedly different from the fixed-point case.
However, it did follow the principle of representing all binary numbers
as positive decimal integers. The programming technique is described in
Section 6.1.1. The routines to simulate the basic arithmetic operations,
other system blocks and functions, and the overall program are described
with detailed flow charts in Section 6.1.2. The floating-point sinula-
tion program is iisted in Appendix F with the details of data card for-
mats.

6.1.1 Programming Techniques

In the ¥loati.ig-point processor discussed in Chapter 4, numbers are
represented as

NUMBER = M . 2C (6.1)

where M is the mantissa in two's complement binary with sign and C is the
characteristic (often called exponent) in signed magnitude form. For the
purpose of Fortran simulation the mantissa was represented in the manner
identical to the fractional rumbers in tne fixed-point processor. This
technique was described in detail in Section 3.1.1. The characteristic
is always an integer and is therefore converted to its decimal equivalent
with a sign for the purpose of simulation.

This approach, for the Fortran representation of the mantissa and
exponent, permitted the use of some of the fixed-point simulation routines;
viz., ADD for addition, MUL for muliiplication, ITREX for truncation of
the mantissa, and MAGNF for firding the magnitude of the mantissa. It is
necessary to align two numbers to be added so that they have the same ex-
ponents. Also, it is necessary to normalize the result of an addition,
multiplication or truncation operation (as discussed in Section 4.1).

Two routines ALIGN and JUSTFY were written for this purpose and are de-
scribed in the next section. It was also necessary to modify ADD slightly
for the reasons discussed in the next section.
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6.1.2 Flow Chart of Pvogram

In this section the MAIN program is described first. Next, the
routines ADD, JUSTFY and ALIGN are described. These routines are used
with fun.tion subprograms MIL, MAGNF and ITREX to form the group of
routines which simulate basic arithmetic operations. The latter three
are described in Section 3.1.2 and are not discussed here. The routines
FLCOEF, IAD and SACGEN perform the functions of coefficient quantization,
input sample auantization and signal-clutter combination respectively.
[AD was described in Section 3.1.2 and so was SACGEN but with a different
name PULSEQ. FLCOEF was prepared to quantize the MTI filter coefficients
into floating-point numbers. Its counterpart for the fixed-point program
was COEF. After FLCOEF the routines FLOFLT and RMSHAL are described.
These simulate the hardware MTI digital filter and the PMS unit (also
referred to as the vector-magnitude unit) for the floating-point processor.

The overall program simulates the floating-point processor discussed
in detail in Section 4.3. Like the fixed-point simulation program it
generates results that can be used in a statistical study of quantization
errors. The MAIN program flow charted in Fig. 6.1, starts the simulation
by reading in signal, clutter, radar and filter parameters which it sub-
sequently prints out. It then reads in the mantissa and characteristic
bit-lengths to be maintained at different points in the processor. Next,
a set of parameters are read which control several different functions,
viz., an option for implementing the hardware RMS approximation algorithm,
an option to include clutter in simulation or not, an indicator to print
out the integrator output statistics after a fixed number of dwells,
start and stop indicators to obtain detailed debugged simulation print-
outs for all dwells between the specified limits, and an option which
controls whether the theoretical output is to be computed with a quantized
or unquantized set of filter coefficients. All the parameters read in by
the MAIN program are explained in Appendix F with the details of how they
are specified on input cards. Then, the clutter filter impulse response
is modelled, and scale factors for clutter and signal combination are
generated and printed (if clutter is to be used in the simulation). The
MAIN program simulates one system block, viz., the post-residue integrator.
A1l the other system blocks are delegated to routines which MAIN calls.
It calculates the output statistics for the i.ardware RMS unit and a
hypothetical perfect RMS unit at the end of each residue. The statistics
involve computation of the maximum, the minimum, the mean and the vari-
ance of the error in the residue output. The error is defined as the
actual output minus the theoretical out,.t (see Equations 5.1, 5.5, 5.7).
The statistics for the difference between the hardware and perfect RMS
outputs are alsn computed. A similar statistical analysis is carried out
on the integrator outputs, i.e., at the end of each antenna dwell. The
nature of the statistics is biased as defined in Equation (3.4). Note
that the simulation results presented in Section 6.2 pertain to the inte-
grator output statistics. The MAIN program calls RANDU for picking uni-
formly distributed random phase starting angles for the doppler signai
and calls RANDM for generating a set of Gaus<ian random numbers to be
used for simulating clutter. The program also monitors and indicates the
total number of A/D converter saturations in a simulation run. The dis-
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Saturation Counter, NSAT=0

l

Read and Print signal and
clutter naramete~s: SCAL,
SCRDB, XM2, SIGMA;, CLTFA

Read and Print radar
parameters: SAMPF, FDOP
Read and Print filter

parameters: NDWEL, NDEL
NCYCLE, CONST

AN

Read and Pr1nt Mantissa
Exponent Bit-lengths: MXM,
MCM,- MTM, MFM, MFT, MRM,
1E§T HIH MCc, MTE MFE,

Read 0pt1ons IDIV,
JADCLU, KMOD, JPRNTT,
JPRNT2, KTHEOR

Flow Chart for the MAIN Program of the Floating-Point
Processor Simulation Program,
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Fig. 6.1

Generate NPULSE samples
of clutter

1

Initialize integrator sums,
ICLUT = 0
ICYCOIF =0

(Continued)

ICYCLE = ICYCLE + 1

l

CALL SACGEN to generate
NDELAY samples of signal
plus clutter

1

HCALL FLOFLT to compute

_@I_:

filter output for I chan-

el 1

H CALL FLOFLT to compute

Q

filter output for 0O chan-

nel

Truncate, expand and nor-
malize filter outputs

l

Call RMSHAL to compute
hardware RMS output

[ ==
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‘Compute perfect RMS output
and corvert to floating-
point representation

[Calculate perfect RIS,
hardware RMS and difference
statisticg '

Integrate perfect RMS and
hardware RMS outputs

Yes

Form arrays of hardware, '
ﬁ nerfect and theoretical
4 integrator outputs

‘{//rPrint number of A/D ////’
Saturations

- Fig 8.1 (Continued)
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Calculate integrator output
statistics

Print statistics over
all dwells

STOP

0SSR e

3

}

-

% Fig. 6.1 {Continued)
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cusston here and the flow chart of Fig. 6.1 present the important features
and a brief outline of MAIN since it is a very large sized program. But,
when used with the detailed comments of the listing (in Appendix F), the
working of MAIN can be easily traced.

The flow chart for subroutine JUSTFY is shown in Fig. 6.2. JUSTFY
accepts the mantissa and the exponent of an unjustified or unnormalized
humber with M < 0.5 and gives back the mantissa and the exponent of the
resulting justified number. The mantissa ic shifted left until a 1 ap-
pears in the most significant bit position »f a positive number or a 0
appears in the moct significant bit positior of a negative number. The
exponent is reduced by the number of shifts the mantissa undergoes. If
the unjustified number is zero then its exponent is s&t to the most
negative value,EMIN,specified to the routine. Note that JUSTFY does not
normalize a number which has overfiowed into the integer portion of the
mantissa as a result of an addition. Such a number is normalized by
correcting for overflow by the program that calls ADD. This involves
dividing the mantissa by 2 and inrremc;iting the exponent by 1.

The subroutine ALIGN accepts the mantissas and the exponents of two
justified numbers, determines the number with smaller exponent, increments
its exponent and divides its mantissa by 2 until the two exponents are
equal. The algorithm is illustratad in Fig. 6.3.

The modified subroutine ADD as flow charted in Fig. 6.4 accepts the
mantissas of two aligned numbers. The modification implies that the
carry of the result is inserted back into the number if an overflow oc-
curred so that the program which called ADD can correct for it and nor-
malize the result. Except for this modification the routine is exactly
the same as used for the fixed-point simulation.

The subroutine FLCOEF quantizes filter coefficients in either fixed-
point (exporent value set to zero) or floating-point representations by
using the concept of quantization interval defined in Section 3.1.1. The
floating-point representation requires that the quantization interval be
modified depending upon the magnitude of the coefficient and the number
of bits available for the exponent. Once the quantization interval and
the exponent are determined the mantissa is quantized just like in the
fixed-point simulation routine COEF. However, if an overflow occurs in
the rounding of the mantissa then it is corrected unlike in COEF. Finally,
as shown in the flow chart in Fig. 6.5, FLCOEF calls JUSTFY to normalize
the number.

For the floating-point processor, the fixed-window non-recursive MTI
digital filter is simulated by the subroutine FLOFLT. It is used for
both the in-phase and quadrature channel filtering. Its flow chart ap-
pears in Fig, 6.6. It calls IAD to quantize the signal sample obtained
from SACGEN. The signal sample is represented as a two's complement
fixed-point number. Next, FLOFLT uses MUL to multiply the quantized
signal sample by the respective quantized coefficient mantissa. This is
followed by the normalization of the product by JUSTFY. Next, the
product mantissa is truncated by using ITREX and is again normalized by
calling JUSTFY. Then subroutine ALIGN is called to align the product and
the accumulator sum for addition. They are added with a call to ADD and
then corrected iV a mantissa overflow occurred or normalized by a call to
JUSTFY. Finally, after NDELAY (total number of coefficients) additions,
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Input Variables: UNJ, EUNJ,
K, EMIN

TEST = 2**(K - 1)

(Positive
Number)
(Negative
Number)

Shift Counter, I = 0
Remove Sign Bit
UNJ = UNJ - 2 * TEST

e

Yes

% UNJ < TEST @
Zero in MSB.
o
3 A Done.
%
1
’ Shift left once
; UNJ = UNJ * 2
: I1=1+1
~$:

Fig. 6.2 Flow Chart for Subroutine JUSTFY.
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4

Replace Sign Bit

UNJ = UNI + 2 * TEST

Adjust Exponent

EUNJ = EUNJ - 1

G-
(oD—-—-— EUNJ = CMIN

% 1 .
% Shift Counter, I =0
i

One in MSB.

No Done.

Fig. 6.2 (Continued)
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UNJ = lINJ * 2
L=J+1

Shift Left once
= |
1

© 1

Adjust Exponent
EUNJ = EUNJ - I

(c } P

Y

Output Variables: UNJ,

EUNJ

Fig. 6.2 (Continued)
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TEST = 2 * * K
Input Variables: IM1, IED = IET1 - IE2
IM2, 1ET, IE2, K - [AED = 1AB3(IED)

IDIF = 2 * * IED

[E2 > IE] IE1 > [E2
IE1 = 1E2
Ml = M2 =
IM/IDIF ! IM2/IDIFF M2 > TEST >
?
Yes (Positive) (Positive) Yes
(Negative) {Negative)
M1 = IM1/2 IM2 = IM2/2
IED = TED + 1 IED = [ED - 1
IMY = IM] + TEST IM2 = IM2 + TEST
L v w A ]
/ Yes
No
4

Qutput Variables:
IE1 = [E2 Py M1, IMZ, 1E1, IE2 |e——— [E2 = IE]

Fig. 6.3 Flow Chart for Subvautine ALIGN,
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o A < N U

Input Variables: N1, N2,

LEVEL

Sign Bit MAX = LEVEL/2
Overflow Flag IOFL = 0

l

Sign Bits of N1, N2
ISNT = NT1/MAX
ISN2 = N2/MAX
Add
N3 = N1 + N2
ICARRY = 0
Next find carry

Yes

No

ICARRY = 1

Fig. 6.4 Flow Chart for Subroutine RDD.
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3
3
Ignore carry ;
N3 = N3 - LEVEL
G-
No
Yes
Sign Bit of N3
ISN3 = N3/MAX
: Nexr check for overflow
Yes o

No
I0FL = 1
3 Next insert carry back if
j N1 is negative
” No G')
§ Yes
E ' Fig. 6.4 (Continued)
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el

TN e

W e IRER

N3 = N3 + LEVEL

- 3
——

e g MR
T e

Output Variables: N3,
I0OFL

e
Sl ,wg:.,-m"‘
Risd

Fig. 6.4 (Continued)
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Input Variables: X, MC,
MCE

:
«
Y
‘.

Quantization Interval
Q=2 *¥*(-M + 1)

2. **MCE)-1=0

Fixed-Point

Floating-Point

Modify Q0 for rloating- v

Point and determine exno-
nent

XN = X/Q

1

Number of Q's in X is
Mantissa
IX = XN
Remainder
XN = XN - IX

©

Fig. 6.5 Flow Chart for Subroutine FLCOEF,
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Round up for positive, down
for negative and check for
Mantissa overflow

| l

Convert Mantissa to Two's
Complement

CALL JUSTFY to normalize
the number

Qutput Variables:
ICFL is Mantissa,
ICEFL is Exponent

, RETURN

Fig. 6.5 (Continued)

it AR RO Vb et WS ALt e e, BN

154

i




Input Variables: X, ICFL,
ICEFL, NDELAY, MXM, MCM,
MTM, MFM, MCE, MTE, MFE,

NSAT A‘l—'

QX = 2 » ** (-MM 4+ 1)

LEVELX = 2 « **MXM

LEVELC = 2 « **MCM

EMIN3 = -(2 « **(MFE-1) 1)
IACE = EMIN3
lIACC = 0

l

Duplicate the ICEFL array
as ICEXP array to preserve
ICEF% coefficient counter,

O~ |
I =1+ 1; Dummy exponent,

IDUMEX = 0
l A/D Conversion of

Signal Sample
CALL TAD(X(1), IX, QX,
EVELX, ISAT)

NSAT = NSAT + ISAT

Fig. 6.6 Flow Chart for Subroutine FLOFLT.
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Multiplication by filter
coefficient mantissa

ﬂ IMUL = MUL(IX, ICFL(I), “

LEVELX, LEVELC)

‘

K= MM+ MCM - 2

l Normalize Product

CALL JUSTFY (IMUL, ICEXP(I
K, EMIN3)

LEVELP = 2« **(K + 1)
LEVELT = 2 « **MTM
LEVELF = 2 « **MFM
MEM] = MM - 1

1Truncate and Expand Product

Mantissa
= ITREX{IMUL, LEVELP,
LEVELT LEVELF)

l Normalize Product

CALL JUSTFY(IMT, IDUMEX,
MFM1, EMIN3)

H Align the Product and Accumulator
ki numbers for addition
ﬂCALL ALIGN(IMT, IACC,

ICEXP(I), IACE, MFM1)

Add Product andlAccumu]atcr‘ Mantissas

CALL ADD(IMT, IACC, IACC,
IFLAG, LEVELF)

Fig. 6.6 (Continued)
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Fig. 6.6

Find the
magnitude of the

Adjust for Accumulator Man-
tissa overflow or CALL
JUSTFY to normalize the

coumylator

Yes

Accumulator Mantissa

(Cortinued)

MAGACC=MAGNF (IACC,LEVELF)

l

Output Variables:
MAGACC, TACE, NSAT
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the magnitude of the accumulator maniiss» is -determined by using MAGNF.
Thus, the computations ¢i FLOFLT use all the subprograms which simulate
different arithmctic operations.

The subroutine RMSHAL implements the hardware algorithm for the RMS
unit and its flow chart is shown in Fig. 6.7. The algorithm is outlined
in Equation 2.2. As can be seen from the flow chart the parameter IDIV
provides two options for the manipulation of the mantissas and exponents
of S and L before they are finally added to implement Equation 2.2. If
IDIV = 1, none of the exponents are disturbed and all the manipulations
dre carried out on the mantissas. If IDIV=0, then wherever possible the
mantissa is divided by multiples of 2 and the exponents adjusted accord-
ingly. The hardware implications of these are discussed in Section 4.3.
At the time of constructing the simulation package it was deemed worth-
while to investigate the two options. But, from the hardware point of
view it is easier to implement the IDIV = 1 option. A1l of the simulation
results discussed in the next section were with IDIV = 0 but it did not
have any effect on the quantization errors since the mantissa bit-length
used for the RMS unit was sufficiently large.

In addition to the floating-point DSP word lengths defined in Table
5-1, three more word lengths were defined for the purpose of simulation.
They appear below as Table 6-1.

TABLE 6-1 ADDITIONAL FLOATING POINT DSP WORD LENGTHS

MFT ---- Truncated filter output mantissa bit-length. Magnitude with
MFT fractional bits. No sign bit is used.

MRM ---- RMS unit input mantissa bit-length. Magnitude with MRM
fractional bits. No sign bit is used.

MRE --- RMS unit input exponent bit-length. Signed magnitude form with
1 sign bit and MRE - 1 integer bits.

Also note

1) For simulation all the exponents were represented in signed
magnitude form instead of the two's complement form indicated
in Table 5-1.

2) MX, MEM, MSM, MSE in Table 5-1 correspond to MXM, MRT, MIM,
MIE respectively in the simulation program.

3) It was not necessary in the si.ulations to define new names
for the exponent bi*-lengths corresponding to MFT and MRT,
i.e., MFE and MRE were used.

6.2 TYPICAL RESULTS

Simulation results were obtained for the set of 9 filter coefficients
listed in Table 3-2. Al1 the simulation restlts pertain to integrator
outputs using the hardware RMS algorithm.
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I1E < IQE

BEGIN

Input Variables: IIM, IQM,

IT1E, IQE
1

EMINR = -(2 » **(MRE-1)-1)
LEVELR = 2 « **(MRM + 1)

IIE > IQE

ITE @ IQE

IIE = IQE

IEDIFF = ILE - ISE
R1=ILM*0.5%(2 + **IEDIFF)

&

Fig. 6.7 Flow Chart for Subroutine RMSHAL
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[IM = IQM
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ILM = IQM ILM = TIM
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FLOAT (ISM):R1

1325 = (ISM + ISM/2)

IDIV —1\ Yes —

?

? No

; ISE = ISE - 3 13165 = 1325/8
l Normalize ‘

' Test overflow and CALL JUSTFY (I316S,

correct erponents. ISE, MRM, EMINR)

: 13165 = 1325

1

! CALL ALIGN (I316S, ILM,

- ISE, ILE, MRM)

g CALL ADD (13165, ILM,

3 IRMS, TFLAG, LEVELR)

%

3

:

o

Fig. 6.7 (Continued)
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132L = (ILM + ILM/2)
11185 = {ISM+ISM/2)/4 + ISM
Yes No
1341 = 132L/2 ILE =
11116S = 11185/2 ISE =

1

ILE - 1

ISE - 1]

CALL JUSTFY (I34L,
ILE, MRM, EMINR)
CALL JUSTFY (111165,
ISE, MRM, EMINR)

:

L

Test overflow and
correct exponents
[34L = I32L
[11716S = 1118S

- ‘ -

CALL ALIGN (I34L, I1116S,
ILE, ISE, MRM)

1

CALL ADD (134L, I1116S,
IRMS, IFLAG, LEVELR)

0

(Continued)
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IERMS = ILE

Yes

IRMS = IRMS/2
[ERMS = TERMS + 1

Fig. 6.7

No

Qutput Variables:

(Continued)

IRMS, TERMS
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The effect of the truncated product mantissa bit-length MTM and the
integrator mantissa bit-length MIM on the average value and variance of
the error at the integrator output is presented first. Then, the effect
of varying signal amplitude on the same output parameters is shown. For
all simulation results MXM = MM = 9 and MCE = 0 were maintained, making
these parameters the same as for the fixed-point processor simulation.
The value of MFM was maintained the same as MTM, MFT = MFM - 1, MRM = 20
and MRT was kept the same as MIM. The values for the exponent bit-lengths
were chosen as MTE = 4 and MFE = MRE = MIE = 6 to avoid possible exponent
underflows and overflows.

The average ervor as a function of the truncated product bit-length
MTM is shown in Fig. 6.8. Here the integrator bit-length MIM is chosen
as the family parameter and the results are plotted for three different
sigral amplitudes. For the signal amplitude of 0.025V the dependence on
MM is very strong for 9 < MTM < 11, However, for values of MTM > 11
there is much less dependence. For the signal amplitudes of 0.125V and
0.413vV 1t 1s seen that the results are not strongly dependent on MTM,

For all three cases 1t 1s seen that as the value of MIM decreases the
magnitude of the average error increases. This effect is most prominent
for the 0.025V case. Comparing this with the corresponding theoretical
results shown 1n Fig., 5.2 1t 1s seen that the lower bound for the 0.025
case s at least an order of magnitude lower than the simulation results.
For 0.125V of signal amplitude the lower bound is smaller than the simu-
lation results by approximately a factor of 2. However, for the 0.413V
case the lower bound seems to be an order of magnitude larger than the
simulation results. It {s important to note that an exact equivalence
does not exist between the two figures because MEM = 10 corresponds to
MIM = 10 which 11es in between MIM = 9 and MIM = 11 curves. A1l the
upper bound values are positive and hence above the simulation results
which are all negative.

The effect on the varianca of the same parameters mentioned above
1s shown 1n Fig. 6.9. Neither MTM nor MIM strongly affects the variance.
As expected the variance increases with signal amplitude just like the
average error. This 1s the only s1$n1f1cant generalization that can be
made about the variance behavior. The theoretical upper bounds for the
corresponding cases are seen in Fig. 5.3, and it {s seen that for all
signal emplitudes the¥ are about an order of magnitude higher than the
simulation results. The lower bounds are almost zero and hence are be-
Tow the simulation rasults.

The average error as a function of MIM with MTM a: a family para-
meter 1s shown in Fig, 6,10 for three different s1?na1 amplitudes., In
this presentation the effect of MIM {s more strongly hrought out. But,
the effect of MIM 1s not strongly discernible except in the case of the
signal amplitude of 0.025V. The average error increases with increasing
signal amplitude, An exact comparison can be made with the theoretical
bounds for the cases of 0.125V and 0.413V by using Fig. 5.4 and Fig. 5.5
respectively, for MIM = 13, For 0,125V the average error lower bound is
smaller than the simulation results by at least a factor of 4. The upper
bound falls below the simularion curve for MIM = 7 but for larger values
of MIM always stays positive in contrast to the negative simulation
values, For 0.413V the lower bound 1s smaller than the simulation results
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Fig. 6.8 Average Error as Function of Truncated Product Mantissa Bit-length
with Integrator Mantissa Bit-length MIM as Family Parameter (9-Tap Floating-
Point Simulation Results, No Clutter, Doppler Frequency = 1500 Hz)
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Point Simulatior, Results, No Clutter, Doppler Frequency = 1500 Hz)
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at least by a factor of 3 and the upper bound is greater than the simula-
tion value by a factor of 4 for MIM = 7. For Targer values of MIM the
upper bound is larger by a factor of 2.

Variance behavior for the same case mentioned above is shown in
Fig. 6.11. Again no strong dependences on either MIM or MTM are cbserved.
As the signal amplitude increases, the variance also increases. A com-
parison with the theoretical upper bounds is obtained by looking at Fig.
5.6. For each signal amplitude the upper bound is about two orders of
magnitude larger. The variance lower bound is almost zero and hence be-
Tow all tho simulation results.

In Fig. 6.12 the effect of signal amplitude on average error is seen
for MTM = MIM = 13. The magnitude of the average error shows several
peaks and valleys with several positive-negative transitions, unlike the
fixed-point processor simulation results. The excursions due to clutter
are spread out at valleys but are cluttered together at peaks. The effect
on variance is seen in Fig. 6.13. It is less erratic than the average
error and shows an average positive slope for the curve. The excursions
due to different clutter cases are closely yrouped together. The
theoretical upper bound curve as seen from Fig. 5.7 is an order of mag-
nitude above the simulation results. The lower bound is almost zero and
hence below all simulation results.
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APPENDIX A

DETAILS OF FIXED-POINT ANALYSIS
by Jerry D. Moore

The analysis of the fixed-point DSP described in Chapter 2 is sup-
plemented by this appendix. Equations presented in Chapter 2 are not
repeated, but the detailed mathematical steps leading to the summary
equations are given.

A.1 FILTER QUTPUT

Signal flow graphs are used to determine the output of the fixed-
window MTI digital filter used in the DSP. Fig. A.1 depicts the MTI
filter. The input is the sum of an errorless signal x(g and the A/D
converter quantization error e(). Traditional symbolc are used, i.e.,
z-1 represents a one sample period delay, h() represents coefficient
values, arrows represents multiplication, unlabeled arrows have unity
factors associated with them, and small circles represent summation
nodes. The ey(n), ... , ey-3(n-N+1) terms are the error associated with
truncation of the product xe)+e()]« h(), A moving-window MTI, or an FIR
digital filter, would produce an output value for each input value. The
fixed-window realization is used because of simpler hardware requivre-
ments, i.e., the delay/multiplication process of Fig. A.1 can be realized
by time multiplexing one multiplier and one storage location. It is the
fixed-window approach that dictates that the samplier be present at the
output. Sample values are taken from the output every N input samples.

The product truncation error terms can be collected and added to
the final filter output as shown in Fig. A.2. Superposition is then ap-
plied to the input sequence and the structure shown in Fig. A.3 is ob-
tained. The lower portion of this figure (where e(n) is the input and
the product truncation terms are added) represents the total quantization
error g() as given by Equation (2.5).

A.2 AVERAGE ERROR AND VARIANCE OF INTEGRATOR QUTPUT

The development in Chapter 2 following (2.5) through (2.12) is com-
plete. The average value of the integrator error is obtained as follows,

M
INTE(M) = & DbB({mN} - Mu
m=1
= M[b - u]
= Mr +e- ul (A.1)
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where it has been assumed that the average value of b(mN) does not de-
pend on m. This is a logical choice for the signal environment encoun-
tered in radar systems, i.e., sinusoidal doppler signal with additive
random noise and clutter. It is possible to show cases where the as-
sumption is not valid, e.g., a constant level input, but this is not a
practical radar signal.

An expression for the variance is obtained by

The mean squared value follows from

m=1

M 2
INTES{M) =| & b(mi) -Mu

=5 ¢ b(mN)B{KNY - 2 M u £ B(mN)
mk m
+ M2y2 . (A.3)

Using (A.1), squaring and subtracting from (A.3),

2
INTE(M)

=1 3¢ b(mN)b(ki) - 2 M u £ b(mN)
m k m
+ M2y-
ol =3 5 [b(mN)B(kNY - b(mN)b(kN)] . (A.8)
INTE m K

The bracketed term will equal zero for m # k when statistical independence
is assumed, thus

e e . . A . - N
AL RS, G Koo RS 2 B 2T

ohure = 2 () - 5 (mn)] . (A.5)

Results given by (2.8) are used for b() and
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BT = [r(mh) + e, ()]’

oy.2 e + 87
r<+2vr e, + e,

1

i+eZ+2TE

t t* (A‘G)

where r and ey are statistically independent. Similarly,
2
ET"NTZ =y Te +8.2
m rot2re tel. (A.7)

Subtracting (A.7) from (A.6) and substituting into (A.5) gives

ofire = I L0 -2 + (67 - 520, (A.8)

from which (2.14) is obtained, i.e.,

Mo 2 +0.2]). (A.9)

2 =
IINTE r t

A.3 BOUNDING OF RMS UNIT OUTPUT

Equation (2.7) gives the expression for the residue, i.e., the RMS
Unit output. Because of the nonlinear relati-nship, it is necessary to
bound this expression prior to determining the average value and vari-
ance. Considering the square-root portion and replacing w() by (2.3)
gives,

/le + qurz /TYi t gI)Z t (YQ + go)[ o (A.10)

This can be viewed as the magnitude of a resultant vector which is formed
by summing two vectors U and V, where

U= {yp ¥g) s

V| =v=/VgZ+g? , (A.11)

The magnitude of the sum of two vectors is less than tne sum of the mag-
nitude of these veztors. Also, the magnitude of the sum of two
vectors is greater than the magnitude of the differernce of the mag-
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?itudﬁs of these vectors. Stated in equation form this gives
2.15).

A.4 CONCAVE/CONVEX THEOREM
A general form of this theorem is given [cf., pp. 563-567 of [13])
and then applied to the analysis problem of Chapter 2.

Theorem: The expected value of a concave or convex function, f(),
of a random variable, x, can be bounded as follows

f(x) < f(x) when f"(x) < 0 : CONVEX , (A.12)
f{x) > f(x) when f'(x) > 0 : CONCAVE. (A.13)

Proof: Expand f(x) in a Taylor's series about the point X,

. —k
fx) = o (—"-k—,-?‘_)_ & . (A.14)

Express this as a sum of the first two terms and a remainder term,

f(x) = f(x) + (x - x) f'(x) +R ,
- X)2
R = (X X) f"(X1) .
X <xp<x for X<x,
X < Xq < x for X> x . (A.15)

If f'() is less than zero, i.e., the function is convex, then the re-
mainder term is negative and

fx) < f(x) + (x - x) f'(x),
fix) < T(xX) + (x - X) F'(X] ,
f(x) < f(x) : CONVEX . (A.16)
For f'() positive, the function is concave and
f(x) > f(x) : CONCAVE, Q.E.D. (A7)
The first application of the theorem is in (2.17), where |u - v| is

a function of the random variable v and is obviously concave. Thus,
from (A.17)
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[u="v[> [u-V], (A.18)

The next application of the theorem is in (2.18). The lower bound
is obtained by treating v as a function of 91 and then 99-

2
o d2y g
v "'a—g—IT— "%3‘3_0 P (A.]g)

The use of gy and then gq is Jjustified because of the statistical in-
dependence and
r

v =jJ/:gI‘- + QQ p(gl’ gq) dglde

r
{[j 917 * 9 p(gI)dgl] p(gq)dgq - (A.20)
This gives from the concave theorem,

. (A.21)

=gy o 12, (A.22)
1(9;2)
This is convex and thus
v</gZ+ gz /27 . (A.23)

A.5 AVERAGE ERROR BOUND

The upper bound expression of (2.19) follows immediately by substi-
tuting (2.18) into the upper bound portion of (2.17) and the results
used in (2.13). The lower bound expression of (2.27) involves another
simple manipulation, viz.,

lu-v] =/Qu-V)Z=WT-2uv+Vve. (A.24)

The smallest value of this expression is obtained by

= yu? - 2u v + V¢

min max min -« (A.25)

lu - 7]
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Using (2.18) yields

J2 - 2 J2qZ + 252 . (A.26)

U~ Vg =
Equation (2.20) follows from (A.26).
A.6 ERROR VARIANCE BOUNDS

The upper bound on o2 is a consequence of using the maximum mean-
square value and the minimum mean value squared, i.e.,

2 . %7 .¥2 .
S = max T " “min o

2 I
e (Try) (W2 +2uv+ V)

3
< (1+ yw) (u? + 2u /2¢7 + 297) , (A 27)

rmin

e (14y)2 (-2,

orz s+ 2y +y D2 +2u v+ V)

(20T T2 - 2y T 4 T2
(7 + 2y, * Y, J(u2 - 2u v + V?)

- (7R w0+ BT T 2)

TTTr T 2772 T LTI L T2 7
ty IV -y v (2 + 4yw ty Y2uv. (A.28)

Collecting terms yields,

2 2 2 4 + o 2 4 v + 4~ v Z 3+ 2
02 <o ?u (1 ZYW) o ft2uv (2 by, + Yot Yy )

+ &
YW

H

v 222
YoV (A.29)

The Tower bound results from using the minimum mean-square value and
the maximum mean value squared, i.e.,
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min ~ " “max

°r‘2 >
0, if above result is < 0.

e 2 TFY )7 (W2 - 20V + V)
= T+ )7 (2 - 2u J2¢7 + 29%)

] 2 — -
T iT'max=(1+yw)2 (u+t2uv+¥v2),

o 2 > (1 + 2y, +v %) (u2 - 2u v + V%)

- = o+ T 2)(y2 T+ 32
(1+2yw+yw)(u + 2u v + V2)

S (7T W (V4 ) (F - W)+ T IV -T2
-(2+ 47w + ?\f+ 'y‘wz) c2uV . (A.30)

Collecting terms yields

02202+ (1+27) 0% - 0V (2447, + 7T +7.2)
YyZyl.v2y2
AR e A A (A.31)

The results of (A.29) and (A.30) depend on o, which cannot be determined
exactly. It can be bounded as

0 2=v2 -7 2

v
= 2‘9‘2_72 .
0,2 <297 - 2g% = 2 ogz, from (A.21),
°v2 > 292 - 2¢%Z = 0, from (A.23), (A.32)
Thus
cr2<02u2+2(1+2Y)og2+2(?v;7+?w2+47w+2)/ZET—-u
+2§;5§’f-27wZ§2q (A.33)
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and

':‘zz_oYz uz - 2 (?;7+7w2 + 47w+ 2) /297 u
+ 297 O'Y?' . (A.34)

The results of (A.33) and (A.34) are (2.22) and (2.23) in Chapter 2.
The output error variance is bounded as per (2.24) and (2.25) in Chapter
2.

A.7 TRUNCATION STATISTICS

The presentation by Oppenheim and Schafer [3] on pages 409-413 forms
the basis for the truncation statistics used in (2.26)-(2.28) and (2.30)-
(2.32). A two's complement arithmetic system is used, i.e., positive
numbers have a 0 sign bit and magnitude bits, while negative numbers are
represented in two's complement form. Letting X represent the fractional
number with ny bits, (the b subscript is a mnemonic for before and will
become obvious later in the presentation), then

"
-n
x| = £ a 27", (A.35)
n=1
The representation of a number is

x =0+ aja, ... anb, x>0,

1. b]b2 ves bnb, X <0 4 (A.36)

x
1

where tha b, terms are determined for negative numbers by

. (A.37)

It can be shown [3] that when such numbers are truncated to contain
n, bits, (where the a subscript is a mnemonic for after truncation),
tﬂen the error ey, is

n

-2 Y e 0. (A.38)

-n
(2 ®

Assuming that the error is uniformly distributed over this range yields

a
5 = - _2____.2._2.__ . (A.39)
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(A.40)

The error statistics for rounding numbers is similar to these results
except that epoynd = 0. The variance expression is the same as in (A.40)
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APPENDIX B

COMPUTER PROGRAM FOR FIXED-POINT THEORETICAL ANALYSIS

by Jerry D. Moore

The computer program for implementing the theoretical analysis of

Aoy MR T e R
BT R RN £ XA A R Y, Y

the fixed-point DSP is presented. The flow chart is given in Fig. B.1
and the program listing in Fig. B.2., The program requires data cards

to specify the number of filter coefficients, the number of residues to
be calculated, the input signal amplitude and frequency, the radar pulse
repetition rate, and the filter coefficient values. The format struc-

ture is shown in Table B-1,

TABLE B-1
DATA CARD # CONTENT COMMENTS CARD FORMAT
1 N,M N=Number of filter Co- 212
efficients
M=Number of Residues
SIGAMP, SIGAMP=Signal Amplitude 3F15.4
FREQ,FPRF FREQ=Signal Frequency
FPRF=Pulse Repetition
Rate
2,3,... H(I),I=1,N Coefficient values 4F15.8 per
card
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READ
PARAMETER
VALUES

|

3
: INITIALIZE
VALUES

CALCULATE

TRANSFER
FUNCTION

J

CALCULATE
IDEALIZED
RESIDUE

!

PROCESSOR
WORD LENGTHS
SPECIFIED

l

STATISTICAL
BOUNDS
CALCULATED

T IS

Fig. B.1 Flow Chart for Fixed-Point Processor
Theoretical Calculation of Statistical Bounds
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C TIOS === THEORLTICAL INTEGRATOR QUTPUT STATISTICS

C

C LEVELOPED Olr CONTRACT DAGOO72 FOR US ARMY RESEARCH OFFICE
C uY JERRY D, MOORE AT UNIVERSITY OF ALABAMA MARCH 1976

C

C LETURMINES INTEGRATOR OUTPUT AVERAGE VALUE AMD VARIANCE
C 1OUNDS FOR FIXED POINT RADAR DIGITAL SIGNAL PROCESSOR

C

C SYMHOLS USED

C SluaMp SIGHAL AMPLITUDE AT INPUT

C U SIGiaL ANPLITUDE AT RMS OUTPUT

C FREQ SIGIAL FREQUEINCY

C FRRF PULSE RATE FREQUENCY

C i NUMUER CF FILTER COEFICIENTS

C H() FILTER COEFFICIEMNTS

C M NUMAGER CF RESIDUES

C UDN A/D wORU LENGTH

C MC COEF., WORD LENGTH

C T TRUNCATLED PRCDUCT LEMGTH

C MF RANGE B3IM ACCUMULATOR LENGTH

C Mt TRWICATED RS LEMLTH

C MuXG MAXIHUM MAGHITUDE OF ERROR AT FILTER OUTPUT
C DUE TO t.x AL MY

C AVOG6 AVERAGE ERROR AT FILTER OUTPUT DUE TO MXx AND MT
< AVOG2 AVERAGE SOGUAPE ERROR AT FILTER OQUTPUT DUE TO
C MX AND T

C SUAG2 SOUARE KOOT (F THEF AVERAGE SQUARED vALUE OF
C THE FRRUR AT FILTEK OUTPUT DUE TO MX AND MT
C VARG VARLIANCEL AT FILTER OUTPUT DUE TO MX AND MT
C ETIIN MINIMNUM TRUNCATIONH ERROR INTRODUCED AT WME

C AVOET AVERALGE TRULCATION ERROP INTRODUCFD AT ME

C VAKET VARIANCE OF ERROR INTRODUCED AT WME

C LRULES ERRUKLESS OQUTPUT (PERFECT)

C AVOIO AVERAGE DHTLCRATOR OQUTPUT UPPER ROUND

C AVOER AVERAGE ERROK AT INTEGRATOR OUTPUT UPPER LOUND
C VAKIO VARIANCE OF INTEGRATOR OQUTPRUT UPPER 1OULD

C VarkIoL VARIANCE OF INTEGRATOR OUTPUT LOWER OUND

C AVGF.RL AVERAGE ERROR AT INTEGRATOR OUTPUT

C LOweR pOUND

C EretiIN MIMIPUM DITLGRATOR OUTPUT ERROR

C ERMAN MAXLINUM THTCGRATOR OUTPUT ERROR

KEAL MAXG
DIMENSION H(21)
C READ IN THE FIXED PARAVETERS
DO 40 MRz1ly4
KEAU(S919) JeMySTGAMP W FREQyFPRF» (H(I) o I=14N)
PRINT 15
PRINT 20018y STOAMPpFREGIFEPRF ) (H(K) o K=1»M)

Fig. B.2 Fixed-Point Processor Theoretical Analysis Program
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PRINT 23
PRINT 21
¢ InlTaALIZE
C HIYSUM = SUM OF MAGHITUDES OF COEFFICIENTS
¢
C

HOUSUM = SUM UF SQUARES OF COEFFICIENTS
Ple = 2P
PI2=6.283185308
HMSUM=U .,
HSQSUM=0,
DO 10 I=1l.N
HMSUMzHMSUM+ABS(H(TL) )
lu HSQSUM=HSQSUM+H (T ) «H ()
INITIALIZATION ENDS
CALCULATE TRANSFER FUNCTIONM AT SIGNAL FREGUENCY
XREALS =0
KIMAGS=0
ARPGZPI2# (FRELQ/FERF)
DO 11 1=1.N
AREAL=ZIH(I) «COS (ARG (I=1))
XIMAG==1i(1)*SIM(ARG*(1I=1))
AREALSZXREALG #XPEAL
11 YXIMAGS2XTHMAGS+XIIMAG
SUMSQ=XREALS» #2 4 XIMAGS# &2
TRANSZSQRT (SUMSG)
TRANSFECR FUNCTION CALCULATION ENDS
CALCULATE Uy THE SIGNAL AMPLITUDE AT RMS OUTPUT
Uz=S516AMP&TRANS
¢ CALCULATION OF U COMPLFTE
C CRLATE LOOPS FOR wORD LENGTH VARIATIONS
U0 14 MXz29,9
00 14 MC=9,9
HOUM=MX +MC =1
vD 13 MT=6,:DUM
MFZT+ALOGLU (N) Z7ALOGLIO(R,)
O 13 ME=6MF
ENU OF WO O LUHGTH SPECIFICATIONS
STATISTICAL BOUNDS CALCULATIONS
DUMLIZ2 o k6 (=iiT) =2 g ¥ = (MX+!1C=1)
AVGGE==NsDUML
VARG=N# (DUML#%2) /3,4 ( (24 k% (=2%MX)) /3, ) «HS0SUiA
AVOG2=VARGH (AVGU) «x2
FAXG=N® (DUME#24) + (2 xk={1X) «HMSUIM
SQRAG2=SORT (AVGG2)
AVOETZ= (2, % (=MT) ) % ( (2o 2% (MF=ME))=1,)
VARET=(AVGET*%x2) /3,
AVGLO=M*(1,00694U+1,42397+50GRAG2+AVGET)
EROLESZMaU
AVOGER=AVGIO=-EROLES

g K el

[N o

O

Fig. B.2 (Continued)
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19
G

U2s

i

i

44

-

VARIOZMA(2,0276+#VARG+D+01595xU%2245,78031*xUxSARAG2
140,020 xAVGG2=94922% (10 ¥ %=5) x (AVGGA22) +VARET)
ETMINZAVGET22,

LDUMRZUR 4242 . 2 AVUGH %22 . 3284 3*UASORAG?

1F (DUM2,LT.0) LuM2=n
AVOERL=M% (1, 0069+SQRT (DUM2 ) +AVGE T=U))

VARIOL=Mx (0, 015U5% (U #2242, %AVGG2)=5,7803+UxSQRAGR
1+VARET)

IF (VARIOL,LT,0) VARIOLZO
ERMAXZMA (0,01 7U44U+1 ,L38621xMAXG)

IF (U,LE, 1.414%bAX0) GO TO 30
ERMINZM (=0,0210%)=1,38367«MAXGAETMIM)

GO 10 31
tRMINzM& (ETIMIN=L))

CONT INUE

Eivly OF CALCULATIONS

PRINT 228 1Xet-Col ToMFoME)EROLES»AVGIO» AVOER»VARIOY
LAVGERL » VARTIOL yERKMINERMAX
CONT INUE
FORMAT (1HLe2X 0o/ 0/ 0 702X 'BOUNDS ON INTEGRATOR QUTPUTY,
10 ERROR STATISTICH === DAGUOTZ2 197609 /)
FORMAT(212¢3F 15,40 /25(4F1%54807))

FORMAT(2X 1301 X o 'COLFFICIENTS 0 I8 11X *RESTDUCS Y 15X,
L'SIGHAL AMPLITUUE = '2FR6:95X» *SIGNAL FREQUENCY =
1FB8e2 15K 1PRF = ' 0FB.20/12Xs *COCFFICIENTS /0 2X0 10F12,80
1/,10F12.8)

FORMAT(2X s /138X t mem=aUPPER (10UNHN eme=et,
123Xy tmmamal OAER BOU) wmewat)

FORMATA(2X o /o 2X 00X 0 KptM 032X g tMT 032X VAF 22X 0 ML 12Xy
1'PERFECT OUTPUT »2X) *AVERAGE OUT4Xy» *ERROR QUTY,
14X o tVARTANCL OUT 03Xy tERROR GUT vy 4X s *VARKIANCE OUT?,
19X VERAIN® Xy ' RMAXY)

FORMAT (STt oU14.00 1960 LU O1ELU 62 ELU6pFlU, 60
1€14,60E13,6)

CONT INUE

STOP

€010

Fig. B.2 (Continued)
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APPENDIX C

DETAILS OF FLOATING-POINT ANALYSIS
by Jerry D. Moore

The analysis of the floating-point DSP described in Chapter 5 is
supplemented by this appendix. Equations presented in Chapter 5 are not
presented, but the detailed mathematical steps leading to the summary
equations are given.

C.1 FILTER OUTPUT

Signal flow graphs are used to determine the output of the fixed-
window MTI digital filter used in the DSP. The symbology is similar to
that of Appendix A.

Figure C.1 depicts the floating-point filter with an input of
x(n) + e(n). The h(k)(1 + & y ) terms are the transmission factors
associated with the filter coeffic1en§ multiplication and the truncation
of this product. The & term is the multiplicative statistical factor
associated with the truncation. When two of the truncated products are
added there is an additional truncation error introduced. This is repre-
scated by the ¢ terms and is a multiplicative term. Consequently, the
terms (1 ¢ z3), j =1, 2, ..., N-1, rapresent the transmissions of the
(N-1) summation processes. A shorthand notation is developed to repre-
sent the chain of transmission multiplications that occur, i.e.,

N-1
(1+ Gk) m (1 + ;1), k=1,2, ... , N-1,
i=k

6y (C.1)

i

O

it

%

It is s7en that for a given output, w{mN), each input sample that is
being used will be multiplied by a filter coefficient and a 6 term.
Mathematically this is given by

N-1
w(mN) = nEO h(n) ON..1- n[x(mN - n) + e(mN - n)] (C.2)

Separation of the x() and e() terms and manipulating gives

N-1
w(mN) = = h(n) [eN-l-n +1-1] x(mN - n)
n=0
N-1
+ nzo h(n) 6y_y_, efmi - n), (C.3)
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where 0 has been added by the + 1 - 1 operation. Thus

N-1
w(mN) = = h(n) x(mN - n)
n=0
N-1
+ nEO [hin)(8y_y_, = 1) x(m¥ - n) + h(n) 6y _;_ . elN - n)](c.4)

fhis yields the equations of (5.1), (5.2) and (5.3).
C.2 INTEGRATOR OUTPUT

The residues are calculated by the RMS Unit and then truncated prior
to being summed in the integrator. Since these are floating point opera-
tions, there is error introcduced by the addition operation, i.e., the sum
will be truncated back to the same number of bits used in each input word.
A signal flow graph is shown in Fig. C.2. There is a strong similarity
to the graph of Fig. C.1, but r subscripts have been included for the
multiplicative error paraweters & and ;. This structure assumes that M
residues are used to form an integrator output. The chain of transmis-
sion multiplications is written as

M-1
6ok = (148, ) S (V4o . k=1,2, 000, M1,
= 0 .
r,0  r,l (C.5)
The integrator ciitput can be expressed as
M
INT(M) = = r(mN) o
m=1

M-1
= mEO [er,m + 1 - 1] r[(m + 1)N]

Y',m"]

M M-1
= 5 r{mN) + = [er — 11 r[(m + 1)N] . (c.6)
m=1 m=0 ’
This yields the equatii s of (5.5) and (5.6).
C.3 AVERAGE ERROR AND VARIANCE OF INTEGRATOR OUTPUT

A determination of the average error expression of (5.8) follows
immediately from (5.5) and (5.7) by assuming statistical independence of
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the residue terms.
The yariance of the integrator error will be equal to the variance

of the integrator output, i.e.,

2 - 2 = N
IINTE = OINT [If] rimi) + ;¢ (“)]‘

] [;F+'é’mt (M)]2

;21 Y 2 + 2 €int ™) ’z‘:' r(nN) + e%nt (M)

-

3t

_ 12 - e 2
r] --2e1m..(l“l)'>;v'-e1nt (M)

o [ FORRTFUNT - F 2] + S0 - &y (00
m

m

-+

2 [eint(n) ; FmT - & (M) :}F] . (e

For m # n the term inside the double summation is equal to zero, thus

2 = 2 2 -a Iy
ofNTE =M 9 T oyt z[eint(m t r(mi) - ey (M) LT ] (c.8)

The bracketed terms are now evaluated

M M
e, .(M)zr(mN) - 7 I (6 - 1) r(kN) r(mN)
int m k=] m=] r,k’]
M M
= kz" z] (8, oq = 1) r(kN) r(mN] ,  (C.9)
21 m= ’

where statistical independence between 6 and r is assumed. Also,

e, (M) y TN 1 (s, ) r
e. .M I r=Mr 1 (6 -1)r
int m=1 k=1 k-l

= Mp 2 - N
Mr 2 : (er,k-] 1), (C.i7)
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From (C.9) when k # m then r{kN) r{wN) = ¥2, thus (C.9) minus (C.10) can
be written as

M M M
M-17r2 x (5 -1+ = (8 -1 M2 oz (s - 1)
k='| \",k-] k=-| I“,k-] k=~l Y‘,k-]

M
(rf-7r2) & (v

- 1)

n

r,k-1

1 (8, ) (c.1)
a T (6., ~1). c.n
oo Mk

Using (C.11) in (C.8) gives (5.9).
Determining the variance %, follows from (5.6) by finding

int
} M M
int(”) ] kil mil (br,k—l ) 1)(er,m-l - 1) r(kN) (%)
2 Mo . MM _
eint(H) m£1 (er,m-u - r] o m£1 k21 (er,n-l ) ])(er,k-l -1,
, o n [ -
(3 -T2
(Bp pey - DT ] . (c.12)

For k # m the difference is equal to zero, thus

M 2
2 = - - (= i ~
Tt mil [ (er,m-l NZ ¥ (er,m-1 N r ] . (€.13)

Changing the index for summation yields the results of (5.10).
The bounding procedure used on the residue ca'culation is complete
in (5.11) through (5.19). The results depend on the filter outgut

statistics g and g2. These quantities are determined from (5.3), i.e.,
_ N-1 — _
g(mN) = nEO h(n) [ (Oyqop - D) x(aN - n) + 8y 4 e(mN - n)],(c.14)

where o and e are assumed statistically independent. Since € = 0, it
follows that
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N-1
g= ¢ h(n) Ta 3~ T XN - n)
n=0
N-1 _
= 1 h() [ By X - %) (c.15)
n=

Assuming that the x() samples come from a doppler signal that has zero
mean, i.e., x = 0, and that 6 is stat1st1ca11y independent from x given
that x is posut1ve or given that x is negative yields

- A N'll

Gg== 1 hin) [ B+ - 6- ] . (C.16)
n=0 N-1-n N-1-n

=3

where A is the peak value of_the sinusoidal signal x() and half-wave
average values are used for x+ and x-, i.e., X+ = -X- = 2A/m,

The mean squared value is more comp11cated but squaring (5.3) and
taking the expected value gives,

N-1 N-1
0% = 20 kZO h(n) h(k) [(bN-l-n = {6y y - 17 %(mN - n) x{mN - k)
n= =
ON-1-n ON-1-k elmN - n) e(mN - k) ] . (C.17)

where e = 0 has been utilized to obtain this result. For n # k statisti-
cal independence can be assumed between the e() terms and also between
the 6 and x() terms, thus

g 2=1z31z h(n) h(k) Oy-1-n X(WN - 1) BN-1-k x(mN - k)

n k
n#k
N-1
+ 2 h2(n)| Te - 1)Z xZ(mN - n) + 63 eZ
n=0 N-1-n N 1-n
2 — —_ —-
= Az-z h(n) h{k) (&+ - 8- ) (6+ - 8-
" nk N-1-n  N-1-n N-1-k  N-1-k
n#k
N-1
+ Zo h2(n) [oﬁ_]_n (X7 + €%) - By q.p X7 + ET] . (C.18)
n:




Gt

The mean squared * 2 of x is the rms value_squared, i.e., X% = A?/2,
thus simple manipu:ution yields (5.21) when 62 = 1/2[8+2 + §-2].

C.3 FLOATING-POINT STATISTICS

Evaluation of the statistics of the floating-point parameters 6k
and 6y g is presented in this section. The procedure is identical for
each of these, thus a generalization is made from the oy derivation.
Using (C.1) and taking the average value gives,

N-1
B+ = (1 +6+) o (1 + z+)
k K i=k i
. N-1 -
=(1+38+) n (1+7+)
kK =k i
=1+ )0+ vk (€.19)

where statistical independence and identical distributions are assumed
between index values. The mean value for 6y is similar except the minus
subscripts be used on the & and ¢ values. T[he mean squared value is

- N-1
ot = (TFEZ « (TFF7
k k i=k i
- (1 + 28 + D)1 + 28, + T2V (¢.20)

The negative statistic is obtained by using the appropriate sub-
script on & and ¢, Evaluation of the 6y i statistics can be accomplished
by replacing N by M and using &, and ¢, associated with the integrator
word lenqths.

Truncation is proposed for the operations in the DSP. A general
development for describing the resulting error is presented. A floating-
point word containing b fractional bits in the mantissa (after trunca-
tion) and C integer bits in the exponent, (sign bits are not included in
these counts) is used and e is the multiplicative error term. The trun-
cated word, xy is expressed as

Xp =X +e X (c.21)

For positive values of x the error is negative, i.e.,

-b

27 2%<ex<0, x>0, (c.22)
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The minimum value of Xx is
x. =0.5125 %20, (€.23)

Thus

.C. = "2 ’ A 2_ 0 \
2 2"2b
OE = T, X 3_ 0 3 (C.Zd)

where a uniform distribution has been assumed for e.
Negative values of x are Apressad in two's complement form, i.e.

|x| =% - 2,

Xk

Sazemy e Seu 2, (€.25)

where M is the mantissa of the magnitude of x. standard floating-point
form dictates that

0.5 <M<, (C.26)

Thus,

2 X 1.5 28=3. 25 (c.27)
Truncation of x** will cause a negative error, i.e.,
x;* =X +e . (c.28)
Considering (C.22) gives
(2 -2 ce s (2-0) 2,
2-20) cen < (2-0)20
2-2P)<c(2-M<0

(2-28) <c@-2 <0, (¢.29)

1
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In two's complement multiplication and division by 2. a negative number
is shifted with zeros brought in from the right and ones from the left.
Thus, to get the 2-! term to appear in the 2-b poasition renuiyes division
by 2 (b-1], It follows that

g2 =2 . (€. 30)

Applying the results of (C.24) and (C.30) to the development of the DSP
parameters gives

5, =5 = o~ (M=)
= - l% 2-2MTM‘

T, =T, = _2-(MFM-1)~

=77 l% AL

5, - _MEM

57 = _g_ . 2 MEM

g; = _Z-MSM‘

Z$'= %,Z-ZMSM' -

These results can be used to evaluate the o statistics of (C.19) and
(€.20) and consequently the expressions of (C.16) and (C.18) and the
error statistics given in Chapter 5.
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APPENDIX D

COMPUTER PROGRAM FOR FLOATING-POINT THEORETICAL ANALYSIS
by Jerry D. Moore

The computer program for implementing the theoretical analysis of
the floating-point DSP is presented. The flow chart is given in Fig.
D.1 and the program listing in Fig. D.2. The program requires data
cards to specify parameters as shown in Table B-1 for the fixed-point
processor,
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SR

READ PROCESSOR
PARAMETER WORD LENGTHS
VALUES SPECIFIED

STATISTICAL
INITIALIZE PARAMETERS
CALCULATED
CALCULATE CALCULATE
TRANSFER G AND G?
FUNCTION
CALCULATE CALCULATE
IDFALIZED ERROR
RESIDUE BOUNDS

Fig. D.1 Flow Chart for Floatira-Point Processor
Theoratical Calculat: * of Statistical Bounds
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OO OO0 OO0 OO0 0

C
C

(@]

(el ol o

TIVOHZ2===THECRETICAL INTEGRATOR OUTPUT STATISTICS

VEVELOPED 01l CONTRACT DAGO0O72 FOR US ARMY RESEARCH OFFICE
3Y JLRRY D. MOORE AT THE UNIVERSITY OF ALABAMA MAY 1976

VETEKMINECS INTEGRATOR OUTPUT AVERAGE VALUE AND VARIANCE
ROUNLDS FOR FLOATING~POINT RADAR DIGITAL SIGMAL PROCLSSOR

SYMLOLS USEL
LELTAP DELTA FOR POSITIVE. VALUES
ZETAR LETA FOR POSTIVE VALUES
ALL OF THE FOLLGwING TERMS ARE THE AVERAGE VALUL OF,
THE TERNM INDICATED:

LELTAR LUELTA  FOR THE R VALUE

ZLETAR ZETA FOR THE R VALUE

A ¢ FOLLOWING THE DELTA OR ZETA MCANSG SGUARLL
T TP FHETA FOR POSITIVE VALULES

THE TAN THETA FOR NEGATIVE VALULS

THETAR THETA FOR R VALUES

Le IHPUY QUALTIZATISM EPROR SQUARED
£ RRUP ERROK AT OUTPUT UPPEDR RGUND
LRKLO EPROK AT CUTPUT LOWER noutin
VARERU VARIANCE AT OUTRUT UPPER 1OUHND
VARERL VARIANCE AT OUTPUT LOWFER nOUNHN

DIMCWSION H{2n)

LIMENSTON AKRTHET(20)

COMMON/PY/ DELTAF»ZETAPILE TP2,Z2ETAP2
COMMON/R/ DLLTARYZETARIDELTR2,,ZETAR?

REAL TN FIXED PARAMLTERS
U0 99 NRUNSZIN1
KECAD (90 19) e My STOGAME o FREOPFPRE (H(1) 0 I=1 M)
FRINT 1n
FRINT 2000 e STIGAMPFREDFPRF o (H(K) s K=1oM)
PRINT 23
FRINT 21
INITIALIZE
PI=3,141592624
Plez6,2083185308
e INITIALIZATICH

CALCULATE TPANSFER FUNCTION AT SIGNAL FRLQUEMNCY
AEALS=O
ALMGS=ZY
ARLZPIZ4 (FRi/ZFERF)
v 11 1z1N
ARLALZH( I »LOS (I ROLR({=1))

Fig. D.2  Floating-Point Processor Theoretical Analysis Program
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XIMG:-H(I)*SIN(ARG*(I*I))
XREALS:XREAL+XR£ALS

11 XIMGS:XIMG+XIMGS
SUMSQ:XREALS**2+XIMGS**2
TRANS:SQRT(SUMSG)
U:SIGAMP*TRANS
EROLES=MaU

END OF TRANSFER CALCULATION

OO

CREATE LOOPS Fonr WORL LEMGTH ARTATION
U0 14 mx=z9,y
O 13 MTM=9,15
MFMzMTM
MFMM1SMF M=
Lo 13 MEM=6 9 MFMM )
MSr=MEM
END OF WCRD LENGTH SPECIFICATION

(xR ala

CALCULATEL STATISTICAL PAIRAMETERS
DELTAP:-Z.t*(I-MTM)
ZE!AP:-Q.tt(l-MFM)
DELYPZ:(I&./S.)*2.**-(2*MTM)
DELTAR:~2.¢‘-MEM
CETARS=2, s g~i51
DELTRZZ(‘O./:% )*20 **“Z*MEM)
ZETARZ:(QC/SC )*20 “*"(2‘MSI‘4,
E2=(2.t¢-(2tMX))/3.
CAMz0,0069
GhMZ:0.000be

C tND OF STATISTICAL PARAME TER ALCULATIONS

C

C CALCULATE ¢
GDUM:O .
L0 30 WL el
NNN:NN-.\
NNz N- 1=NNN
DU”I:THETAP!N;NUNN)-THETAN(N:NNNN)
AR?HET(NN):DUMI

3u GUUM:GDUMfH(uN)*bUMI

:GUUMt(SIGANP/PIJ

€ ENL CAL(ULATION OF ¢

C

C CALCULATE e
GhuML=zg,
NMI:N-I
UO 31 =1, u
Lo 3 KhZ1loh
IF(KK.EO.NN) 60 TO 31

Fig. D.2 (Continued)
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ERTEITERTEOR
gl

GDUMLI=ZGOUMLAH (Hik) *H(KK) * ARTHET (MN) *ARTHET (KK)
31 CONTINUC
G2UUMZ ((SIGAMPx#2) /(P Ix*2) ) *GDUM]
GDOUM3=0,
DO 3c Nhz=lon
INNNzZNHN=1
NNNNZN=1=NNN
DUM2=( (SIGAMP®%2) /74 +E2/2 . ) #* (THETP2 (11, NNNN) ¢+ THETN2 (s NNIIN) )
LUMB=THETAP (N MRMNMY + THE TARI (o NNNN)
GDUMX=(1.,~DUI'3)* ( (SISAMP%%2)/2,)
GHUMY= (DUM2 4+ GDUNX ) #H (NN ) &H (INT])
5LDUMI=GDUM3+GDUIMY
dé CONTINUE
G2=62DUM+GDUND
C END CALCULATION OF G
C
C CALCULATE ERRUP AND ERRLO
DUMEZSQRT (2, %62)
LUuMozU+DUMY
LUML0O=1,+40AN
HKMAXZDUMLU=UIMG
LUM7zU=NUNMY
DUMLLZ1 .42 #CAM+OAIN2
R2MAXZOUMLT *0OUMO* 42
R2MINzZDUMLL #DUMT7 % %2
ROUM=U%42=2 , s UalUMG+2 . G &% 2
KDUMLZ=0,
IF(RODUM,GT . 0,) HKDODUMLI=SORT (RUUM)
KVMIN1=0DUM10%PDUNL
ADUMT=ALS (DUNMT)
ADUMI2zARS{U=-SURT (2, ) *ALS(6))
RMLINZ2ZPDUMI0«AMIE L CADUMT » ADUML 2}
M INZAMAX L (RTTHIL 2 RMT2)
vlUMb=0,
{JO 33 Maz1,i4
MMMzMM=1
33 DUMSZDUNS+THETAK (M i1MM) =1,
ERRUP=GAMAM&U+DLI1 0% (M¥GUMG +DUMSXDUMA )
LRERLO=RM IS (M+DUAD) =kl
C Fhiu CALCULATION OF FxRUP ANL ERRLO
C
C CALCULATE VARERU AND VARERL
VARRUP=ZR2MAX=RMIII* %2
UUML IZR2MIN=RMAX %2
VARKLO=AMAXL1 (DUML3,0,)
GUMEzZ0,
LuUdy=0,
Lo 34 MMzlev

Fig. D.2 (Continued)

202




TR T Y ATy o s
PR it s h e 5 "E
B

TR,

C END
C

1o
14
ld

192
2\

4y
Yy

MMM = MM=-1
LUMB=DUMB+THETR2 (MyMMM) =2  a THETAR (Mo MMM ) ¢ 1
LUMG=ZDUMO+ (THETAR (Mo MMM) =1, ) %2

VAREL TUZR2MAX % DUMA= (RMIN* %2 ) *DUMO
EILDUMZR2MIN#DUMB= (RMAX* %2 ) xDIIMG
VAREIL=AMAX1(EILDUM,0,)

VARERU=Z (M+2,+DUMS ) «VARRUP+VARE IU

VARERLZ= (M+2, xDUMS) «VARRLO+VARE IL.
CALCULATION OF VARERU AMD VARERL

WRITE(6,40) MXyMTMyMFMyMEM)MSMEROLES s ERRUP, VARERU,
1ERRLO» VARERL
CONTINUE

CONTINUE
FORMAT C1H1 02X 0 /0 /0/92X0 *BOUNDS ON INTEGRATOR OQUTPUTY,

1' EKROR STATISTICS «===FLOATING POINT === DAGUO7<Z 1976%4/)
FORMAT(2TI2,3F12,40/95(4E2041307))

FORMAT(2X» 130 1Xo *COLFFICTIENTS Y9 IS0 1X0 *RESIDUES 15X,
1'SIGHAL AMPLITUDE = *yFH.695Y s *SIGNAL FRECQUENCY = v,
LEBe2rOAs 'PRF = *9FB420/12X0 '"COEFFICIENTS Y 0/ 92X TELS5. 80
L/v7015ene /0 10150 8)

FORMAT(CX 9 /056Xy VmemmalUPPEK JOUND=wm==t

119Xyt wwamel UVER 30UHDw=e=et)
FORMAT(2X 9 /00X 11X 02X 0 tHTMY 92X tMFM® 32Xy *MEM® 02X 0 *MSMY ,

16X YPERFECT OUTPUT 11X, *ERROR OUT v, 8X» *VARIANCE OUTY,
T11X, vERROR OUT v, 8Xy *VARTANCE OUTY)
FORMAT(2XsHI5%05L20,0)

CONT INUL

STUP

&0

Fig. D.2  (Continued)
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E FUNCTION THETAP(MeK)

1 COMMON/P/ DELTAP»ZETAPDELTP2,ZETAP2
2 THETAPZ (1. 4UCLTAP) ® (1 4 2ETAP ) 2% (H=K)
3 KE TURIN

3 EHD

; FUNCTION THETP2(rieK)

COIMMON/P Y/ DELTAPZETAPWDELTP2,ZETAP?

THETP2= (1,42 *DELTAP+DELTP2) 5 (1,42, #ZETAP+ZETAP2) # % (N=K)
KFTurH

£:1.9

FUNCTION THETAN(MK)

COMNMII/ZP/Z DLLTAR ¢ ZETAPOELTP2,2ETAP2

THETANZ (L =DFLTAP ) % (1 o =ZETAP ) %4 (Ne=K)

WE TURIN

APY)

FUNCT IO THCTHZ (1K)

COMIAON/P Y/ DLLTAL o ZETARfDFLTIP2,2F TAP?

THUTHN2Z (1 =2 o # D LTAPADELTIZ) (1, =2 4 2ETAP+ZETAPZ) # % (N=K )
HE TURN

IO

FUNCT I THLTAR (M K)

COMMAN/E/ OCL TA e ZETARYDIFLTR2 9 2F TAR2

THETARZ (1,40t LTAR) # (Lo 4Z0TAR) #% (M=K)

RE TURI

LD

FUNCTION TH.TR2 (MeK)

COrtON/ZI/ DLLTAR P ZETARYILTR20 20U TARR

PHE TR () o4 o #DLLTARSDLELTRE) # (1 o 42  « ZETARM LE TARS ) #4 (1=K )
KE Tuii

EriD

i

i Fig. D.2  (Continuad)
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APPENDIX E

JUMPUTER PROGRAM FOR SIMULATION OF THE FIXED-POINT PROCESSOR
by Bhadrayu J. Trivedi

This appendix contains the FORTRAN computer program to simulate the
fixed-point processor. In the following discussion the input cards are
described in the sequence actually used by the program.

Input to MAIN

Card-1 -- NRUN
Explanation -- Number of simulation runs to be made.
Format -- I2

Inputs to STARTQ

Card-2 -- SCAL, SCRDB, XM2, SIGMAF, CLTFAS

Explanation -- SCAL is a scale factor for normalizing signal plus clutter,
in order to use al7 the dynamic range of the A/D converter. SCRDB
is the signii-to-clutter power ratio in dB. SCRDB is 0.0 if no
clutter is to be used. XM2 is the ratio of dc to ac clutter power.
SIGMAF is the standard deviation frequency in Hz of the clutter power
spectrum. CLTFAS is the phase of the clutter,

Format -- 5F10.4

Card-3 -~ SAMPF
Explanation -- SAMPF is the sampling or pulse repetition frequency in Hz.

Format ~- F10.4

Card-4 -- FDOP
Explanation -- Doppler Frequency in Hz.
Format -- F10.4

Card-5 ~- NDWEL, NDELAY, NCYCLE
Explanation -~ NDWEL is the number of antenna dwells. NDELAY is the
number of filter coefficients. NCYCLE is the number of residues.

Format -- 313

Card-6 -- {CONST(K), K=1 NDELAY)

Explanation -- CONST(K) is the Kth digital filter coefficient. Note
that a maximum of seven coefficients can be specified on a card.
For more coefficients, extra cards should be used.

Format -- 7F10.6

Card-7 -- MX, MC, MT, MF, ME, MS

Explanation -- These are the processor word lengths in bits as described
in Table 2.1,

Format -- 5I3

b,




Card-8 -~ (IPRINT(I)}, I=1,9)
Explanation -- IPRINT(I) is the Ith print option such that:

IPRINT(I) = 0 No print
1 Print

whers

I Input to A/D converter

Output frem A/D converter

Qutput frcm multiplier

Truncated output from multiplier

Input to accumulator and accumulator output magnitude
Final filter output magnitude (input to RMS unit)
Output of RMS unit

Truncated output of RMS unit

Integrator output

[ LI I T N ¢ AN LU I Y B )
(VYo No B NNFPRE N WICH L ]

[ ]

L
=]
It
W

Format

Inputs to MAIN

Card-9 -- JPRINT, JADCLU, KTHEOR
Explanation -- JPRINT controls the printing of RMS output statistics.

JPRINT = 0 No print
1 Print

JADCLU controls addition of clutter to signal.

0 No clutter
1 Add clutter

KTHEOR controls the type of filter coefficients to be
used for computing theoretical output (infinite pre-
cision answer)

0 Unquantized coefficients
Quantized coefficients

JADCLU

KTHEOR

#H n
—d

Format -- 311
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COPY WYALIBLE 70 ppc
PERMIT FULLY LEGBLE pgé‘ﬂﬁﬁﬂ'b"n'

MAIN PROGRAN TFTHG
SHOWS QUANTIZATICN ERRNAR OF NOMPECURSIVF FILTER
ASSUYE STATIAMARY TARGST WITH N(OPPLEF
MAY QEPEAT THME AMTENNA DWELL RECAU®RE CLUTTER [S PANDOM
DIMENSION NUTAS(S12),00TPAR(ST12),0UTTHI(S12)
COMMNAN/ELTPAR/YDWEL 4NDFLAY NCYOLT,TCONST(512) LEVELX,
* LEVELF,LEVELS+LEVFLF, LEVELC,CONST(512),XCONST(512),
v LEVFLT
CIMMAN/BRINT/ZIPRINT(1S)
COMMONZRPULTFL/XI(5*2),X0(512),JAanct U
FUMMONIRADNPAP/OID? NELT W NPULSE,FONPLAS, RE.CSyD
POAMMANJUPOPUL /TIM,PHASFLICLUT,(1(512),06(512)
READ (S,1070) MRUN
1350 FaRMAT (12)
PO AINDY I MR
EOSVAT(/IX, “MUMLER OF A/N COMYERTER SLTYRATIONS = *,15/)
EARMAT(IV, T4, ” NVYFRELOWS IN ACCUMULATION, IN PHASE °
* “FULSF M0o7,1%)
FORMAT(1X,76,° OVERFLAWS IN ACCUNBLATION, WwUADRAT 7,
* TEULSE NOLTWTR)
6 FANKAT(IN,” AVERTLAW 1M INTEGRSTION DUSIVG CYCLE NOW %y
* %) i
5 FORMAT(IX,”INTEGPATOP AUTPUT Fr° DWELL N0 “4I5,5X, :
¥ “OCTAL = “ 4,017, 3% "REAL 2 “4F*'ce6)
& FORNMAT(/25Y,“ANTFNMA DWELL NUMPE® “,13/2%X.2%(1Hw))
7 FNRMAT(/SX, IN-PHASE CHAMNEL. MTT CYCLF 047,14/
)
v

[ B o B o ]

il

no

e

EQRMAT(/SXx, “AUADRATURE CHANMNFL, NTT CYCLE %0.%,14/)
FORMAT(/IX.“OUTPUT OF PMS ALAORITH™Y,2%,70CTAL = 7,012,
* SN, “QUANTTYZED = “(F12.3)
17 FORMATC(/1X,“TRUNCATED RS VALUFZ,6X,°00TAL = 7,012,
2 SYGTQUANTYZED = “¢F*2.5)
14 FOONAT(/YX,“THNTEGRETED VALUE® Ok “NCTAL = 7,017,
* S!,‘QUANTTZCD = "F120§)
17  FOBMAT(IX,*)(1M%),2OVERFLOW IN INTFGRATIANT 1 (14%))
989  FORMAT(1HY TSN Pmmww RYS QUTPUT STATISTI(S ====’y//)
3] FORMATC(TS,“INFIMNITEZ,T2R,"ACTUAL P¥3 HARNWARE",Té6,
*“PERFECT A¥S REALIZATIANY,T1N7,°0MS DIFFERENCE®,/,T6,
X PRECISIONT /T2, 2NUM ANSKER?,T12,70TPYT ,T32.“ERROUT",
KTLS, CYARTAMCE?  Too “NUTPIT? y TP, “kPAOUT T 0, “VARIANCE,
*797.'E°RDI".T1U7.’AVCDIF'.T‘2’,'VAQDXV'./.T7.’--—',
ATE A2 (1H*)  T19,20(1H*)  TS3,3°(1H*),T27,35(1H*))
G327 FOPMAT(IHY,TLSH ,* ~aw= INTFGRATO® NAUTRUT STATISTICS =r=e’,
* /]

ERR FOOW‘T(T?.'-"*‘ LVERLGGF :RQOR'QT.’ZlE1?QS'T71":’2.5'Tc?'
Hf‘.1.l.,/,‘72.’-~-- M!NIN”"’ EFROQ'QT:”"Z1’QQQT71"‘.1?QSOTG7'
*F11./b'/,T£.‘-”‘ ."""-XII\“U"' Eop,‘\“"rz"';1‘).n’~71'r.12.5'197'

*F11.4)
TEG FORMAT(IX,T12,7812.%,%0%2.4)

Fig. E.1 Listing for the Fixed-Point Simulation Program.
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084  ENIMAT(3ITIY : .
292 FORWATCIN,“NN, OF DWELLS,T2,5Y,7SUM OF INTEGRATOR 7,
«CANTOUTS=?  FI2,5/1X,78VGs OF INTEQPATOR AUTHPUTS3 ,F12,.5)
ETT  FARwaT (/1Y 10011 a)  “THIS SIMULATION (NANTAINS CLUTTER®)
Q72 FORMAT(/ 1Y, 12 (C1HR) ,“THIR SIMULATIAY QGOER NOT *,
* “COMTAIN CLUTTER®)
CALL STARTD
(’i#**w*ﬁ&*ﬁ*****’***t***i*t**ﬁ***i**it******#***t*tt**(l**'i
REXD (S, 58A) JPKINTJADRCLU R THEQR
TF (¥THENRLEC, ™Y PRINT 3781
TEF (rFTHEOR,FG, 1) POINT 2082
N8 FOSMAT (1K, 17(TH#=) "ThFNRETICAL AUTPUT CrYPUTER®,
*x 7 WwITH IDF3L COCFEICIFNTS )
DEET FALY T (A1 The) S THFORETICAL AUTPUT (NAWPUTEN”,
7 W TTh QUANTTIZED COFFFICICNTS/)
!F(J'\;‘CLU..'For)) SO T” r’?~
pRINT a7®
60 TN 97?
370 FRIAT G771
YITRANTINUY
MBUMP 2 (KNNELAYS1) {2
NDUHM (NDEL\Y=1)/7?
IF (YTHENR.(EQ.") &GN TO 21§87
HAFF=X(NONST(NDUNP)
NN 91 K21 NV
HAFFRHNFE 4 (e CONST (DD AKX ) RCAS(FI2EN0PRDLL T4x)
1 CasMT Y le
T TA 235
2T WOFFsONSTOANUNME)
NN 2055 =1, pte
TGS HOBF=RNFF e (#COINSTINOIUNP IR CIS(PIP&FDNF oDdCLTol)
254 THEDNT ARG
ktﬁtr*ﬁ"'iiﬁ*t*“"*'i*‘*ﬂ’l‘ﬁ**ﬁ*t*i*t'ﬁt‘t*'i*tki’i"*Iiiii‘**f**
AL IFLOAT(LEY L)
TOUT= 2o FL AT (LEVELS SLFVELT)/FLOATOLIVELT)
GY=0 /FLIAT(LEVELT)
SUNIMT= o0
TFQIPRINT.C DY £) T Q77
CRIANT yun
PIINT G
GA7  CoMTIVE
1PyT="
Afjcger="
VPERS 4=,

N PERT Ly | Lfﬁiﬂm__umu

Fig. E.1 (Continued)
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NYTMAX==10QND,
OUTMINZIOON,
QUPMAX==10"N,
OfUPMIN=1O0",
ODFMAXE1GND,
QDFMIN= 100N, o
NSATE2]) ’ s
1Xx=1234567
DO 15 IDWEL=1,MDWEL
CALL RANDU CIX,1Y,PND)
PHASFa(PI2)%PND .
R X222 X R R A R R R R R A R F R R 2 R R S R R R R AR RS SXEE AR X 2 ]
ERRSUM=Z(,
FSOSUM=D,
ERRMIN=INL",
ERPMAXa=(inN,
C*ttttittt'ttt'**tit [ ZE AL RXERRRAS LR AR AR ARl ] )]
IFCIPRINTEGN) GO TOH S9N
PRINT &,JO0VEL
9N  CONTINUE
CALL UPDATR
TOoUTe)
1POUTa"
PERSUMED,
PESQSM=E(,
PERMINZIN)",
PERMAX=wi()N],
DIFSUMa),
DIFSQS’OQ
01'"!"’1“0”0
DIFMAX2=-1011,
PO 1?7 ICYCLE®] JNCYCLF
¢ GEMERATE NDELAY SAMPLES FACH OF X1 AND X
CALL PULSEN |
¢ COMPUTE ACCUMULATOR NUTPUT FNOR 1 AND @ CHAMNELS
IPRaTIPRINT(IY# TRRINT(2)+IPRINT(2)4
* [PRINT(LI+IPRINT(S)ISIPRINT(X)
IFCIPRL,EQ,N) GO TQ 19
PRINTY 7,ICYCLE
19 CONTINUE
CALL FILTNA(XT JINIOMS,NOVFLI NSAY)
IF(IPRLEG,N) GN TO 20
PRINT #,1CYCLE
2N COMTINUE .
CALL FILTINA(XG JINURNS JNOVFLA,\SAT)
¢ CHFECK FOR NYERFL e
c NOVFLI AND NNVFLO ARE NUMBFERS NF OVEPFLOWS
IFINOVFLIGNE,D) PRIYT P ,NQVFLI

Fig. E.1 {(Continued)
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RN

AR CARF S

A

IR R

T T T,

R T P, 0

¢ Iw

11
¢ TR

Catranw

TFINOAVFLOMELTY PRINT I,NOVFLQ

PLEMENT R4S ALROPITHM
TRYS2IRMSACINIPMS, THNARMS)

TFCIPRINT(7) E0,7) 6O TO 11
YIRMSZFLOAY(IRMSIAT

PRINT 9 ,IRMS,,XIRMS

CONTINUE '

UMCATE TO Y& BITS AND FYPAMD TN YF 3ITS
TRMSTSITREY (TRYS JLEVELF,LEVELLLLEVELS)
CRNERIREEPRA NN L Y 2 R 23 X X2 22 222 22X X2 2 X222 R 2 2 0
YIPMST2FLOATIIRMSET) «QOUT

TFCIPRIKY(R) EC,™) GN YO 13

KXY T R R R I R R R R R RS XTI RS SN R RS RS R R AR AR AR RRA L

13

PRINT 10,IPMET 4 nIRMSY
CONTINUE

X F I R EE R I R AR RRSE SRR AR R SR AN AR RS R AA RS2 A AR AR 22D

Fig. E.1

FRAOGUTEXIAYST=THEQUS
ERFSUMSERPRRUMSTRROUT
AVCEFREPREUM/TCYCLE
FOOSUMRBE SWTUM +FRTOUT»w?
AVGSRVEESGOUM/YCYCLLE

EVGMSYESQRT (AVILNOY)
CIGERRSAVORGV-AV(EPRR? '
TFCECRMAY LT JEEROUT) LERMAXZERPUT
TFC(EPRMINGATLERRAUT) EFR¥INatgPOUT
TPPYRRGURT((TINTR Y3 #QT ) aa Do (TRGPMSwATIew2Y/0T
IPONETalTREA (I OCRMS o LEVELF, LEVELE JLFVFLY)
XPRMCT2FLONTCIOHMSTIRGAUT
PEROUTEXFRYSTTHFQUT
PERSUMEPERCIMePECONT
FAVESREPERSUM/TCYCLF
PISOSHIPESOSMIEEIIONT WD
PAVSQVSPESNSM/TCYCLE

PAVKCYSSORTY (PAVSAY)
PSIGFRIPAVSQV=PAVERR WS ?
IFC(RFRVAN LT PTRNUT) PFR%AYEPEZCOUT
IF(PFR¥IN AT PEROYUT) PERMINRPEPQOUT
FREDIFFERRNUT=PERIUT
DIFSUMSDTIFRUMSERPDTF
AVGDIF=DIFSUM/TICYCLE
DIFS053DIFSAS+FRADIF&e?
DIFASVaDIFSCS/TCYCLE
DIFMSYSSART(NMIFATY)
VACDTF=DIFASV~AVGD T Faa?
TF(DIF¥AY JE TLE7KDIF) DIFvAX=ERPDIF
TFCDIFMINLATETRDIF) DTEYINIEKODIF
TFCIPRINT.FGD) 50 TO 93R

OAINT 984, TCYCLE ,THEMUT YIRMST  EPROUT ,SIRERIR,APINST,

(Continued)
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*PEROUT,PSIRER, =Rnorﬁ.hvsaxr,vaabfr
932  CONTINUE : -
Ct*tti L ZEXEX X 2 Aﬁ**t*tﬁtttt'*ttttttiﬁ*t**tt*Q#*****titt***tt
¢ INTEGRATION
CALL ADD(IGU?.&R%ST.IOUT ENTOFL LEVELS)
: !F(IRTOfL.NE.ﬂ)PRIMT 17
!IOUTQFLOAY(IOUT)*OOHT
IFCIPRIRT(N) LEQLY) 6O TO 14
PRINT 1a,5UT,vI0UT
14 CONTINUE
CALL Abb(lﬂOHT.IPR”ST.!POUT.INTOFLvLEVFLS)
TFCINTOFLWMEJNIPRINT 17
XPIOUTEFLOAT(IPOUT) 2GOUTY
TFCINTOFLLG4]) KO TO 412
PRINY 4 ICYCLE
12 CONTINUE
OUTSELOAT(TOUTI*GOUT
SUMINT=SUMTAT+OUT
IF(JPRINTFGN) GO TO OFO
PRINT QBE,RVGEPR.PAVERP.AVGD!F,FDR"IN,PE”M!N.DIFNIN.
*FRAMAX ,PERMAY ,DIFMAX
ORY  CONTINUE
OUTAR(IOWEL Y=XTOUTY
OUTPAR(IDWFL)BXPIOUT
OUTTHECIDWEL)SNCYCLECTHEOUT
15 COHTINUE
LF(NSAT,ME.D) PRINT 1,NSAT
PRINT 9¢?
PRINT 021
PO %5 1IDWEL=1,NDVWEL
AUTETRSOUTAW (T IDHEL)~OQUTTHF (1IDWFL)
NUTPFRIOUTPARITIDWFL)Y«AUTTHEC(IIDWEL)
AUTDTF=QUTERP=AUTPER
OUERSMSOUENSMeNUTERR
NPERSMEOPENSMSNUTPFR
ODTSM=ODIFSM+NUTDIF
OUAVERSOUERSM/ TIDWEL
OPAYIRSOPERSM/TIDWEL
NOAVFR=ODIFSM/TIDWFL
NESQASMZ0ESNSY ¢ NUTEPR**?
NPFSSM2OPESSMeNUTPER* %D
IDFSSM2ODFSSMCUTOTIFrs2
NUTSTIG=(OETASM/IIPWEL) =OUAVER K
QUPSTG=(AP=SSM/ITDWEL) =~OPAVER W+
ADFSTOG2(NDFSSA/ITIDWEL) »ONAVER##2
TFCOMIMAX LT OUTERR) QUTYAX=OUTERR
TF(OUTMIN,CT,OUTER?) QUTMIN=OUTERR
TF(OUPHMAX L T,OUTPER) OUPMAXSOUTPFR

Fig. £.1 (Continued)
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PSR S G ARSI R SR R N TR AR e TR, e TR R TR Tt
. . S ey AR VRS R . T
X .. 4 4

o

IFCOUPMINGATOUTPER)Y QUPMIN=OUTFER
TECONFMAKJLT,OUTDIF) ODFYAX3NUTDYF
[FCONFMIN,PT, OUTDLIFY OPFAINIALUTDLF o
TF(MAD(LIDWEL, TD) NEWD) 60 TH 962
PRINT OGS4, TI0WFEL ,OUTTHELTIDWEL) JNUTARIYIDWFLY yOUTERR,
*OUTSIGOUTPARCIIDWFL) OUTPER,OUPSIG,OUTOLF,IDAVER,NDFSIG .
962 CONTYNUE ‘
GRS CONTINUE o ‘
PRINT GRTAUAVER JOPAVER ODAVER JOUT*IN,OUCYINGODFMIN,
*AYUTMAR JOUPMAY ,ADFNAX
AVGSI=SUMINT/FLOAT(NOWEL)
IECIPRINT(11),FG.DY 66 YO 2
PRINT 22 NNPWFL JSUMINT,AVGRST
21 CONTTWUE
1709 CONTINUE
S0P
EAD

CURRAUTINE STAPTQ
COVPON/CLTIPAT/ YN (1724) JHETLZ2N Y oMy 1T INCERL
COMMON/ZELTPAP/MD v EL JNDELAY NCYCLE,TCONSTII12Y ,LEVELX,
* LEVFLFLLEVELS JLEVFLEJLEVELCLCONSTES12),XCONST(512), |
» LEVELT ;
COMMON/PRINT/IPRINT(1S)
COMMON/RADFAR/PTI S DELT JNPULSF FEOP A8 RS 4CSy0d
FOPMAT(TFIN L)
FOOMAT(1017)
FORMAT(7FIN,.40) :
3 OFOFMATCIHTIXy “SCALE FACTOR = * Y4X,F9,.2,¢
* WX, TSTI6HAL=TO=CLUTTFR RETIO & “.5%,FCe2,7 LR,/ !
2 1N, TCLUTTRR DC=TO=Al OAWEP PATI® = *,FG .0,/
* 1%,°SIGMA OF CLUTTER SPECTRUM 3 “,2Y,Fyezy’ ul%4/
* IX,PCLUTTER PHASE 3 715K, F0,4,7 24D7)
FORMAT(IX,“SAMPLING FREQUENCY = “, 10X ,FG,2," n2°) b
FORMAT(IX,“DNPPLER FREAURACY 3 “,19X,F6C %% W)
FORMAT(TIX, “NUMBL > OF ANTENNA DWSLLS = “,0%, 1%,/
* IXGONUMIED OF LTLAYS = 7,12V, 75,/
* L TNUMBED OF PULSES INTEGRATED = “,1¥,75)
FOIMAT(IY, “FILTER wG0 LFENATHY 4 Y, Y7 40,7807 4X,
LS S S PR LS SRS TS PR I A XS LS Y
FOOMAT(/25Y,7 FILTER COEFFICIENTS “/) o
I FOPMAT(IX,“CNEFF, NO, = “,1%,° ACTUAL = “,Fr,.5,% JCTAL® .
# 7 = 2 01247 WUANTIZED = “,FQ,4)
151 FOSYAT(//ET K TVTT TNOLT £QYPALenTs” o g
KL DI P KT SeCOS(EaP G FD DT e el 5, CI(CLTY? CE
* /2’7'."1(&39‘7.5‘»‘\fZ.P[.‘D.D'”*L'c-fS.C‘HCL“T)'1
172 FaRYMATC(//IY .k = SCALT FACTNR =7,12¢,F17,%

Fig. E.1 (Continued)
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, */1X,“AS = CIGNAL AMPLITUNE o K 27 44XyF1245
. #/3X4788 = T CHANG DC CLUTTER o K =7 ,2X4F12.5

*/1X,°DS = A CHAN, DC CLUTTER , K =742XyF12,5
*/1X,°CS = 1 AND Q@ AC CLUTTFR , K =27,2%X,F12.5
#/1Xy“0T 2 1/PRF IN SECONDS =" ,8X,F12,5

- */IX,"FD = INITIAL DOPPLER IN HI =27,3X,F12,5)

¢ READ CLUTTER AND STIGNAL PARAMETERS
N21024
READ(S¢1)SCAL,ySCRDOB4XM?,SIGMAF,CLTFAS
PRINT 3,SCALWSCRNByXM2,SIGYAF,CLTFAS
¢ READ RADAR PARAMETFRS
READ(S,1)SAMPF
PRINT & ,SAMPF
¢ READ DNPPLER FRENUENCY
READ(5,1) FpOP
PRINT S,FDNP
C READ FILTER DARAMETERS
NEADC(Sy2INPWEL JNDELAY NCYCLE
PRINT A ,NUNEL,NDELAY NCYCLE
READ(S,42S)(CONST(K) JXmI ,NOFLRY)
REBDCS¢2IMAGMC yMT M ME 4§
PRINT 74MX o MCyMT  MF,MEMS
READCS,2)(IPRINT(IY,(=1,7)
LEVELX= 20w
LEVELC=2444C
LEVELT22w%avT
LEVELF22eenip
LEVELE=2#amME
LEVELS=2ww"g§
SCRu1)ew(S7RNB/1D,) - j

¢ A/ CONVERSIAN OF THE FILTER COEFFICIENTS
AC=2,/FLOAT(LFVELC)
PO 1% IDFLAYS] NDELAY
13 CALL COEBF(CONSTCIDFLAY) TCANSTCIDELAY) Qr,LEVILE)
PRINT R
PO 14 IDELAYZT NDE' AY
IS=ICONSY(IDRLAY)
TUFC(IS GTWLEVELC/?)TISIIS=LEVELC
ACONSTaFLOAT(IS)*GC
YCONSTCIDELAY)=GCONST
14 PPINT 9, I0FLAY CANST(INSELAY)  ICONSTCIDELAY) ACNNST
DELT=1,/SAVPF
MPULSESNCYCLF*NDELAY
PI=3.14159624537
PL2=2,%P1
c GENERATE GAUSSIAN SAVMPLES
CALL ANIT(434772,)
SIGRANET,

Fig. E.1 (Continued)
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FRTEFR LA DS N NSRS G Sy e ey o R e

R

CALL RANDMOXN,N, ~,,S1GPAN;
SIGTAU=4,/(PI2+SIGYAF)

SET UP CONSTAANTS FOR THE CLUTTER MNDFL FILTEP IMPULSE
RESPONSE :
SIGSS=SIGVAU/DELT
ITI=SQRT(PT/2,)%3]16SS
T1=171
SIGI=SIGSS/(Sa™T(2.))

TTVAYz4+1TY
INCGAUYZ Y2424 ((MPULSE=T1Y/1TL)

r GENERATE FILTEM TMPULSE CRSPONSE
DO 12 1=1,7TMAX
R .
HOI)ITEXP (w(ted aT )2/ (2,#(S1C1ewD))?}

12 CONTINUE

GIMERATE SCALE FALTORS
CHANGE TO AS=SQART(SCPI#SCAL
ASESART(SCP)*S AL
BE2SARTURAM/ (] Lo XM2)IARCAL*CNAS(CLTIFAS)
CS2SART Y /(2o (1,442 RS0AL

MESCART (UMY (] ¢+ YWV YASDAL*TITINICLTFRAS)
CRINT 11

ARINT 1072, SCAL AS RS NS CSyNELTWFDOP
NETUPN

CNh

™3

oy

SUPROYT Ny, UPDATA
COVMAN/CLTNAT/XYM C1N24) JHCT1L20) WA ITT L INCRAD
COMMONIRADOAD /O AR T NOULSF  FONP SRS ,C8,D8
CAMMONUPDPUL Y/ TIM PRASE  TCLUT,CI (52, Cu(S12)
NIMENSTOY VAT ()
NATA K/THY/
TCLUT=N

¢ GEMERATE NPULIF SAMPLES OF (LUTTER
NG 11 1=1,NPULSE

Cr¢1y=n,
11 tu(I)=r,
¢ HEOE T 48 1C MORT THAYL v RAUSSIYNY #9738 A0 NERLERD
TECUKHINCOLA)Y JLE Y 60 IO 15
¥ =

capLy R\hﬁﬂ(l“q“"oo‘n)
15 CONTUINUE

Y1 IS, THCn ML
12 XLT(1)=xX8 (T +¢)

ke +T 4,06y

U OO ALARE 79

)
Fig. E.1 (Continued) PERMIT FULLY [EGIBLEDgEgg%sun”O“NT
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BN S el e S e s R " - R Ge
PR

no 14 J4=1,4
: JINC2(I=1)/17]
IM=T=-JINC*TTL
M2 (6=J)*1TTI4IM
JP=J+JINC
) CICII2CI{IY4XNT(IPI #H(M)
CACI)aCQCIY+XNTCIP+JR)I*H M)
14  CONTINUE
RETURN
END

SURRAUTINE PULSER _
COMMON/FLTICAP /NAVEL JMDELAY (NCYCLF ,TCONSTES12) ,LEVELX,
# LEVELF,LEVELS JLFVELELEVELCCONST(S512) ,XCONSTL(512),
* LEVELT
COMMON/PULTFL/XYI(512),X0(512),JAnCLY
COMMNN/RADPAR/ DI 2,DELT (NPULSE FDNPAS,RS,CSy0
COMMANJUPDP UL/ TIM,PHASE, TCLUT,C1€592),CG(512)
C  GENERATE NDELAY SAMPLES OF SIGMAL PLUS CLUTTER
P1=23,141597653°
ntDZ‘PI/?o“
PID2T321,5+¥1
00 11 IDEL=1,NDFLAY
ICLUTSICLLT +1
PHASESPHASESPT I%FDAPSLFLT
DAS=zAS
v CAS=AS
' TF(PHPAS JLF.P1?) PHASEZPHASE=PIY
TF(PHASE 6F,FI) DASzwAS
3 TF(PHASE oGT oPID2 AND JPHASE LT PID2TZ) CASE=AS
PPHASE=PHACE
TF(DPHASE «GELPT) DPHASE=NPHASE=PY
TF(DPHASE CELPTL?) DPHASEZEPI=DPHASE
| XGCINEL)SDAS+STH(DPHASE)
Z XI(IDEL)=CASHCOS(DPHAL D)
! TFCJADCLULFGLN) fO Th Onp
! CYTCINELYEXTCIDFLI4RSHCS+CICICLNT)
YGCIREL)EXN(IDFLI*DS=CS*CGCICLUT)
90C  COMTINUE
11 CONTINUE
RETUPN
END

.

SUBKOUTIMNE FILTAQOX ,INPHS,NACOFL,LNSAT)
DIMENSION Y (1)
COVMAN/FLTPAR/PDWEL JNPFLAY NCYCLE,ICONST(SY2) ,LEVELX,

"Fig. E.1 (Contimied)
215




S IR ITSESRR L Ty T 7
; « ;

5

-l

2

»~

i

a

o

r

13

* LEVELFZLEVELS JLEVFLELLEVELC,CNNST(512),¥CNNST(512),

* LEVELT
COMMAN/PRINT/ZIPRINT(1S)
FORPMATC/IX,“FILTER INPUT FOR DPLAY NN e T4y” = “4F12.5)
FORMATCIX, “QUAMTIZFD IMPUT 1N, “0CTAL 2 “,012,

* SX,“QUANTTZSD = *,F12.5)

FORMATCIXNy*MULTIPLIER MUTPUT 4yR/X4°NCTAL = 2,012,
* SY, QUANTTZSD = “,F12,%5)
FORMATCIX,"TRUMCATED PRONDUCT 4SX,"NCTAL = “,712,

* OSX,TLUANTTIZED = "LE12.%)

FORMATCIXN, "ACCUMILATED VALUE,SX,“1CTAL = 7,012,
* 5!.’QIJANTTZF'D s ‘vF’Z'S)

FORMAT(IX,“INPUT TN RNS QLENRITH™ 34, "CCTAL & *,012,
* SXLCQUANTTIZFD = “,F12,5) '
FORMAT(IX,1DC1H*) %4720 CONVERTSR SATURATION®, 17(1H®))
FORMATOIX,1D¢IHA) ,“OVERFLOY 1% ACCUNULETTON 1Y (1H®))
AX=2 /FLOAT(LEVELX)

LEVELMELEVTLY® (LEVELC/2)

NT=2./FLAATY(LTVELT)

NC=2, /FLOART(LEVELL)

TACC=)

NACOFRL=R

PO 1Y IDELAY=Y  NDELAY

TFCIPRINTCI) GNTL™) PRINT 1,I0DcLAY X (IDELAY)

A/D CONVERSIOM OF STGMAL SAMPLE

CALL TADUACINREIAY) JIXN AKX JLEVELX,,T8AT)
TFCLSAT (N Y ANDLIPRTNT(I) JNE L) pPBINT 7
TFCIPRINT(OP) 6", ") (Y 1A O

15=1Y

TFCIS o CT WL "VFLY/?)IS= 8= EVFA
YIXSFLOAT(TS) a0

ARTNT 2, T, XTYX

FONTINUE

MSATENEATSTISAT

YULTIPLEICATION RY FILTEK COEFFYICIENT

TRUL=MUL (LY ZTCANSTOINLLAY) JLPVELY JLEVELD)
TFOIPRINT(T)LEC D) 60 T0 17

IS=1vulL

TFCIS 6T ol VALY /P)IS=ISeLEVTL *
YIFULSFLNAT (TSI« (wyY

ORINT T, ImML (X THUL

COMTINUE

€ TRUNCATTION AAN TXDANSTIN

TAT=TTREX (THIL LEVTLY  LEYELT JLEVTLF)
TECIPRINT(A) JEN ) 69 To 14

1S=1vT

FFCIS e GTWLEVFLF/T)IS=18=LFVELF
XIMT=FLOAT(IS) +GT

Fig. £.1 (Continued) - GUP Y AVMUNF Tu nnn WES uﬂT
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PRINT 4,IMTX1IMT

14  CONTINUE

€ ACCUMDLATION

CALL ADDCIACE , IMTZIACC IACOFLLLEVELF)
IFCIACOFLGNELDIPRINT 8
IFCIPRINT(S).20,7) 69 TO 15
IS=IACC
TFUISeGT W LEVELF/?)ISx]1S~LEVELF
XIACC2FLNAT{ISI*OT
ORINT S,1A0C0,X1ACC

15 CONTINUE

11 NACOFL=NECOFL+TIACOFL

C FIND THE MAGNTTHDF m
TKOMSa¥AGNF (TACC LFVELF) COPY Avmm.[ 10
TFCIPRINT(A) €0, ") RETURN , M
XINRMS=FLUAT(INR"S ) woT PERMIT F'lﬂ
PRINT £, INFHS, ¥INQNS

RETUPN
END

FUNCTION JI™4SA(IN]I 1ING)
€ FIND IL AND IS, THE LARGER AND THF SMBLLER AF THg INPUTS
IFCIMLGTLING) GO TO 14
1S=IN]
ILsING
0 TO0 92
" L=
[S=]INu
12 180&=18/?
1§014=21508/2
TS10146=180%3¢4¢75715%
TLo2sqLy»
TFCIS LT ILU2) G0 7O 17
€ 1F S > M5 L
ILOL=TL0?/?
IL304=T1L 024104
1sp2=18/2
IS§1114=183n144 750
ITR¥SA= [S1*1/+4 70704
RETUPN
C IfF S ¢ N8
11 IR¥SA=ISI0TA+T0
PETUON
END

SUBROUTINE COEF(X,TX GyLEVEL)

Fig. E.1 (Continued)




XNEX /4
IX=XM
YhzxhelX ,
TECAPS(XN) L GF,"s5) IXEIX4IGIANCT, 1Y) J
TF(X.0F ") RFTHPY ‘ -

IX=IX¥+LEVEL . .
RETUPN ‘ B
FND ’ ‘ 5

SURRNUTINE TAD (X s I¥ N LEVEL,ISRT)
1XsX/G
15AT=2}
L OYAYSLEVELJP-1
CLTECIABSCIRY WFE oMAXS GO T 10
CUOTFEXLGT Y PETURN
IX=1YeLEVEL-?
RETUSN
17 IXsISIGANIM X, 1Y) ,
1587=1 i
IFCIX ot T o} TX=IXeLEVEL
NETUFRN
£N0

SUFRPUTINE ARDIN T M WL I0FLLEVEL)
MAXELEVILYD
10802}
f FIND SIAN BITS NF 1 ANdD N2
TSHTI=NT /YA
ISM2=N?JMAY
ADD N1 AND N
NRshten2
C FIND TKRE CARRY 17 |
1¢ARRYS ) ’
i
|
|

-

TF{(N?LT.. VFLY 6O T0 19
[CARRY=1

¢ IGNARE THL fADRY
HianTel EYEL

15 CONTINUE

C  IF M1 AND N2 ARt NF DYFFEAEMT STGNS, M0 OVERFLOW
TE(TSNT L MNEeISHN?) RETURN

C FIND SICY 1T OF 32
TSNT=NT ) "ay

¢ CHECK FOR LJEPFHL NV
TFCIONT F,, 1 CAFLY) RETHYY
10pL =1

o B T “
e Gt g Lss:atgngggggﬂw ‘
21 :
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% ™

END

FUNCTION JTHEXCTNLLEVLINLLEVLTP,LVLOUT)

IN HAS MIN BITS (LEVLIN = 2%«¥IN)

TRUNCATE IN TO TP BITS (LEVLTR = Z2#&%TPR)
JTREX®IN/CLEVLIN/LEVLTR)

EXPAND TO MOUY BITS (LVLOUY = 2#eMOUT)
TFCITREX oLTLLEVLYR/?) RFTURM
ITREXY=ITPEY4LVLOUT-LEVLTR
RETURN
END

FUNCTION FULINY M2, LEVELT,LEVELZ)
CONVERT INPUTS TO SIGNEDN INTEGEPR
PAXImLEVELY/?
MAXZzLEVEL?/?
CRRELR
M§?EN2
TEOINTSGT oMAX%) NST2NT=LEVELY
TE(NI (GTMAX?) w%z:u’-LFVEL’
MUL=NSTeNS?
COMVERTY PRODUCT TH Tuwh:S§ COMPLE“&N
1F{MUL «GELN) RFETURN
MULSMULS (LEVFLT*MAX D)
PFETURN
EMnD

FUMCTION NMAGMF (IM,LEVEL)
MAGATITUNE OF A& Tw?:S COMPLEMENT NUM“L°
TFOINGEQWLEVEL/2) TnsINed
MAGHF=TIN
TF(MAGNF LT LEVEL/2) RETURN
MAGNFRLEVEL-“AGNF
PETURN
"END

SUBROUTINE RANPU (IX,IY,RND)
IVSFLOCS37,1X+635%9)
RNDZTIX*()44A56413F«0

IX=s1v

RETURN

END

Fig. E.1 (Continued)
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SURRGUTINE ANIT(START)
CORRAN/INALSESAD (RNDT,PS
ARDaSTANT ’
ANDI=START+N, OﬁDﬁGQ
RS=247436,

RETURN

END

SUBROUTINE RANDE (X ¢ NoXMEANLSTDEY)
COMMON/NOLCE/ADD JRNDY,PS

DIMEMSION ¥ (1)

no T Ial.n

ARNEARDARSONSwa?

KSARNZEOAQNNAIYR0,
PROBCARN=FLOAT(K)#IOALEDNLNAN, Y210 00,
1F{APDY2 4102

ARNaY,

RESeRR+T,

LR PL UL IVStel) Lok i

TFCRMDYGGELT4D)Y PRINT S.ﬂho1
ronnnr(1x,'nab4- yF3M,1%87)
NEVOTHSERT (=2 o *ALOGCOANDYI))aCNnS (4. 2F 21050000 2)
FNDISRND2

INRESTDEVAREYDY

YCIIRXNRSXMEAN

FETUON

END

COPY AVAILABLE TO 0BG DOES NOT
. PP™TRGL LEGISLE PRODUCTION

Fig. E.1 (Continued)
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+, APPENDIX F

N COMPUTER PROGRAM FOR SIMULATION OF THE FLOATING-POINT PROCESSOR
, by Brian P. Holt and Bhadrayu J. Trivedi

This appendix contains the FORTRAN capputer program to simulate the

floating-point processor, In the following discussion the input cards
are described in the sequence actually used by the program. '

Card-1 == NRUM :
Explanation -- Number of simulation runs to be made.
Format -- I2

Card-2 -- SCAL, SCRDB, XM2, SIGMAF, CLTFAS

Explanation -- SCAL is a scale factor for nomalizing signal plus clutter,
in order to use all the dynamic range of the A/D converter. SCRDB
is the signal-to-clutter power ratio in d8, SCRDB is 0.0 if no
clutter is to be used. XM2 {s the ratio of dc to ac clutter power.
SIGMAF s the standard deviation frequency in Hz of the clutter power
spectrum. CLTFAS is the phase of the clutter.

Format -- 5F10.4

Card-3 -- SAMPF
Explanation -~ SAMPF is the sampling or pulse repetition frequency in Hz.
Format -- F10.4 '

Card-4 -- FDOP
Explanation -~ Doppler Frequency in Hz.
Format -- F10.4

Card-5 -- NDMEL, NDELAY, NCYCLE

Explanation -- NDWEL {s the number of antenna dwells. NDELAY is the
. :um:gmof filter coefficients. NCYCLE is the number of residues.
ormat -

Card-6 -~ (CONST(K), K=1, NDELAY)

Explanation -- CONST(K) is the Kth digital filter coefficient. Note
that a maximum of seven coefficients can be specified on a card.
For more coefficients, extra cards should be used.

Format -~ 7F10.6 : .

» card'7 huled "m. MCM. "TM. Mm’ MFT' MM| MRT’ "I"
Explanation -~ These are the processor mantissa bit-lengths as described
in Table 5-1, Table 6-1 and Section 6.1.2.
Format -- 813
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Card-8 -- MCE, MTE, MFE, MRE, MIE
Explanation -- These are the processor exponent bit-lengths as described
c :n Tag}g 5-1, Table 6-1 and Section 6.1.2. .

ormat --

Card-9 -- IDIV, JADCLU, KMOD, JPRNT1, JPRNT2, KTHEOR
Explanation -- IDIV indicates an option for implementing the hardware

RMS algorithm. .
IDIV = 0 Manipulate L and S by adjusting exponents as far as
possible.

= ] Manipulate L and S by adjusting mantissas oniy.
JADCLU controls addition of clutter to signal.
JADCLU = 0 No clutter. :
=] Add clutter,

KMOD, integrator output statistics are printed out at
multiples of KMOD antenna dwells.

JPRNT1 {s the antennd dwell number at which a
detailed debugged printout is to start,

JPRNT2 1s the antenna dwell number at which the
detailed debigged printout is to stop.

KTHEOR controls the of filter coefficients to be
used for computing theoretical output.

KTHEOR = 0 Unquantized coefficients.
s ] Quantized coefficients.
FORMAT -- 615

222




A
S A
Hes i g LI
e SR VT ‘ :
R e B ..
SRR SR - : -

IIOVNEILIEY 9

«»

[a W alala Wl a iy Na iyl

DY

Fig. F.1 Listing for the Floating-Point Simulation Program.

rea TSR TR
e R ':vf‘r%“ﬂ'“‘ﬂ-&'\‘#‘ﬁ Iy

tttittt*ttittt#titttttt't*tttttOﬁtﬁ'tttttlﬁt#tt*ttiﬁiﬁ
MAIN PROGRAM

FLOATING POINT SIMULATION OF MY nnoaa sXGNAL 9ae¢esson
JANUARY=JUNE 1976 Us OF A, TUSCALOOSA ’
twitﬂiittttttiitlttttt'i0ttt*tttitititQu*tQQ*?Qt'i"'t
MAGNITUDE IS EXPRESSED IN INTEGERIZED THNOS COMPLEMENT
NOTATION. EXPONENT 1S EXPRESSED x«n mvs«axz«ao SIGN
MAGNITUDE NOTATION.
tttititt*tt'ﬂtttit*ttittﬁttlit'tt*'iﬁtt*'ttﬂtitittqttﬁ
INTEGER EMINX,EMINR

‘DIMENSION ouvAn(1000) ouvaattooO).ouvvﬂ5(1000)
DIMENSION XN(2000),H(2000)

COMMON/SATUR/NSAT

COMMON/SACOUT/XTI(512),X0(512),JADCLY
COMMON/CLYGEN/PHASE ¢ JCLUT,C21(592),Cu(812)
COMMON/SACGEN/PI2 DELT FOOP,AS,B88,(5,08
COMMON/NOISE/ARD yRNDT,RS
COMMON/FILTER/ICFL(STI2)ICEFL(SI2) (NOELAY ,MTH NXNM,
i"CH'"FHQMCEQH'E'"?E’CONS?‘S'?)Q!!C'L"‘Z)
COMMON/RMSHAL/MAM JLEVELR ¢EMINRIDIV,MRE
COMMON/PRINT/JPRINT

READ (5,1) NRUN

FORMAT (12)

D02 1RUN=I,NRUN

INITIALIZE A/D SATURATION COUNTER

NSAT=(

1 23 XXX X2 R XX RS RN 222 RS2 2A 22 R 022222 22X )]
READ CLUTTER AND SIGNAL PARAMETERS

SCALESCALE FACTOR FOR SIGNAL AMPLITUDE

SCRDBaSIGNAL TO CLUTTER RATIO IN OB

NOTE: SCRDRsD, IF CLUTTER IS NOT USED

XM2sRATIO OF DC TO AC CLUTTER POVEN

SIGMAF=STANDARD DEVe OF CLUTTER FREG, IN NZ,
CLYFASEXCLUTTER PHASE
.Qtiittttﬁt*ptitittitttitttﬁttt&titttttti'ttt't.tttttt
READ (S543) SCAL,SCROB,AM2,SIGHAF,CLYFAS

PRINY 4o SCAL SCRDB (XM2,SIGMAF CLTFAS

FORMAT (7F10,4)

FORMAT(IHY 3 “SCALE FACTOR s “,16X,F 1004,/
* 1X,°SIGNAL=TO=CLUTTER RATIO = “,SX,Fi10,4,° DB"4/
* 1!.’CLUTTER DC=TO0~AC POWER RATIO = "'190‘9’

* 1X,°SIGMA OF CLUTTER SPECTRUM = “ 3N, F1%,6,”" HI®y/
* IXy"CLUTTER PHASE ®» “,18X,F104447 RAD")

[ 122 X2 R 22 XX X2 R R R X2 RS XXX XXX 2 XXX X222 23 X
READ RADAR PARAMETERS

SAMPF=SAMPLING (PULSE REP.) FREQ.

FOOP=DOPPLFR FWEQ,

[T XX 2222273213 2x222322 28 1x32222232X3222332315231%X}]

g o

I
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"READ (5,3) SAMPF

READ (5,3) FpOP

PRINT 5, SAmPF

FORMAT(IX, “SAMPLING FREQGUENCY = “,9X,F9,2, 1X"ﬂl')

" PRINY &, FOOP

FORMATCIX,“DOPPLER FREQUENCY = “,10X,F9.2, sx.‘nz')

A1 222312224223 IXRI AR 22222220222 a2 2 g2
READ FILTER PARAMETERS

NOWELSNO, CF ANTENNA DWELLS

NOELAYSNO., OF FILTER COEFFICIENTS

NCYCLE®NO., OF RESIDUES

CONST(K)=K~TH FILTER COEF,

ARROENARNRN R AN ACARNRANANEARRRRN A AN R A RO N AANERASRNANNN AR OO R
READ (5,7) NOWEL NDELAY,NCYCLE

FORMAT (1013)

READ (S,8) (CONST(K) Ku1,NDELAY)

FORMAT (7F10.6) _

PRINT 9 NDWEL NDELAY ,NCYCLE

FORMAT(IX, “NUMBER OF ANTENNA DWELLS = “,4X,15,/

* 1X,°NUMBER OF DELAYS = “,12X%,1%,/

* 1X,°NUNBEP OF PULSES INTEGRATED & “,1%,15/7)
t.tt.ttittttttQittt‘ttitttttt'ttitttttdttitﬁt'ttttttttt
READ WORD LENGTHS IN BITS
MXMuINPUT SIGNAL MANTISSA WITH SIGN
MCMSFILTER COEF. MANTISSA WITH SI6N
MCESFILTER COEF. EXPONENT WITHOUT SIGN, «6E.O

MTMSTRUNCATED PRODUCT MANTISSA WITH SIGN, oLEMAMIMCM-

MTESTRUNCATED PRODUCT EXPONENT WITHOUT S16N,

SEUNTE GGEL((20*NCE) SMANINCH=2)

MFMEFILTER ACCUMULATOR MANTISSA WITH SIGN,; <GEMTM
MFExFILTER ACCUMULATOR EXPONENT WITH SIGN, 6T MTE
MFTaMAG. OF TRUNCATED FILTER OUTPUT MANTISSA

WITHOUT SIEN, LT .MFNM

MRMSRMS MANTISSA WITHOUT SIGN, «GE.MFY

MRE=ANS EXPONENT WITNH S1AN, GE MFE

MRYSTRUNCATED RNS AUTPUT RANTISSA NITHOUT

SIGN, JLE.RNM

MIMEINTEGRATOR MANTISSA WITHOUY SIGN, o+GEJMRY
MIEaINTEGRATOR EXPONENT WITH SIGN, GE.MRE

'Y 222 XX X222 2 A X222 2 R 22222222232 X222 20 22}
READ (S547) MXM MCM MTM MFM ,MFT MAN MRT MIN

READ (S,7) MCE  MYE MFEMRELMIE

PRINT 10, MXM MCM, MTH MFM MFT MRM MRT ,MIM

FORMAT (11X, “PROCESSOR MANTISSA BIT LENGTHS“,4X,"MxM’,
2 X TMCM a3y MTM T 3N “MFM 33X, “MFT 3N, “MRM’,3X,
* “PRTC IAL,MIM /31X ,916)

PRINY 11, MCE MTE,MFE ,MRE MIE

FORMAT (1X,“PROCESSOR EXPONENT BIT LENGTHS”,10X,“MCE”,

Fig. F.1 (Continued)
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PN MTES 3N " MFE”  ON "MRE” DA, THIE” /37X, 31696X41896%X916)
1 2 232222 A X2 22 22X 222222222233 2222223222223 2223]
"READ OPTIONS
10IV=0PTION USED BY suaaoutzna nnsnAL
JADCLU=Y IMPLIES SIMULATION WiITH CLUTTER
=0 IMPLIES SIMULATION WITHOUY CLUTTER
JPRINT = A PRINT OPTION, CAN BE USED FOR DEBUGRING
1F JPRINT = 1 THEN NOWEL = & SO THAT THE SIZE OF
THE PRINTOUT IS-LESS THAN 100 PAGES
KTHEOR=0 TIMPLIES THEQOR, USING IDEAL COEF,
=1 IMPLYES QUANTIZED COEF. USED
[ Y R R R R R R X 2 X R X T2 222122222 2223222222378 322X223 1]
READ (5,12) IDIV,JADCLU,KMOD yJPRNTT,JPRNT2,KTHEOR
12 FORMAT (61%) ‘
IF (JADCLUCNELT) PRINT 17,101V
1F (JADCLUSEQ1) PRINT 18,101V
17 FORPMAT(/ , 1%, 10(1H®) ,“TH]IS SIMULATION DOES NOT 7,
¢“CONTAIN CLUTTERZ,10(1He),"IDLIVE",12/)
18 FORMAT(/ 31X, $0C1H®) " THLS SIMULATION CONTAINS CLUTTER?,
* 10(1H®) ,"1DIVe”,127)
IF(XTHEOREQ,0% PRINY 2051
IF(KTHEOR.FQ.1) PRINT 2082
2ne ronnut(ix,10¢1u'),‘1uz0R51!an OUTPUT WITH “,
* “IDEAL COFFFICIENTS”/)
2052 FORMAT(1X, '0(1Ht).‘THEORETICAL OU'PUT WITH *,
* 'nunNszen COFFFICIENTS"/)
I T 2 XA 2 2 X X REX 2222 X212 X222 2222 X2 2203222222222 12 2]
MODEL CLUTTER FILTER AND GENERATE CLUTTER SAMPLES
SCRe1Q,«v(SCRDB/10,.)
DELT=1,/SAMPF
PI=3,141590265%3R
Pl1222,¢P1
NPULSESNCYCLE®NDELAY
SIGTAUZY,/(PI2¢SIGMAF)
I1F (JADCLUWGNE.1) 6O TO 14
[ X2 X2 22X22 2323222322222 X3 2222322322322 2222202}
SET UP CONSTANTS FOR THE CLUTTER MODEL FILTER
IMPULSE RESPONSE
SIGSSsSISTAU/DELY
ITI=SQRT(PY/2,)%S16GSS
TI=1T1
SI61=S1GSS/(SQRT(2,))
ITMAXZE*]ITY
INCGAU=12422((NPULSE=1)/ITD)
2232222232222 8X2222X2232X2222232232223 2222220 ¢3X2)
GENERATE FTLTEP IMPULSE RESPONSE
0112 1=1,1TMAX
B=1l

Fig. F.1 (Continued)
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HOI)=EXP(=(Bu3 #TI)ww2/(2,2(S1612022)))
CONTINUE

RRAFRENARCNRAN SN RRR RN ARNANANRIAN BRI AN N AN AR AN NPT AN AN N
GENERATE SCALE FACTORS

CHANGE TO AS=SGRT(SCR)*SCAL

AS=SQRT(SCRI*SCAL
BSxSORT(XM2/7(1,+XN2)I*SCAL*COS(CLTFAS)
CSESORT(14/7(2e%(1,4XM2)))0SCAL
DSESARTIXM?/C1o4XM2))*SCALNSINC(CLTFAS)

PRINT 101

PRINT 102, SCAL,AS,8S,08,CS,DELT,FDOP
FORMAT(//25X,“MT1 INPUT COMPONENTS’
*//20X g "XIBASHCOSC2vPI*FOWDT)4RS+CSHCI(CLUT)?
* /20X, XQEASHSINC2*PINFD#DT)+DS=CS*CACCLUT) )
FORMAT(//1X,"K = SCALE FACTOR =7,12%X,F12,%

*/1%X,7AS = SIGNAL AMPLITUDE % K =% ,4X,F12.5

«/1%,°8S = 7 CHMANs DC CLUTTER w K 2%,2X,F12,.5

*/1%X,”°0S = Q CHAN, DC CLUTTER » K =7,2X,F12.5

#/1%x,°CS = 1 AND @ AC CLUTYTER « K =°,2X,F12,5

*/1%X,°0T = 1/PRF IN SECONDS =% ,BX,F12,.5

#/1%,“FD = INITIAL DOPPLER IN W2 %43X,F12.5/) .
Q'Qttttttttﬁt'i'it*ttttttﬁiﬁtt'titttﬁttiiyﬁt'tﬁtttttit
60 Tr 20 '
AS=SCAL

CONTINUE

L A2 X2 XX EARARA AR 222222222222 R22 2K 2
QUANTIZE THE FILTER COEFFICIENTS AND REPRESENT THE
MANTISSA IN INTEGERIZED FORM (TWOS COMP,)
PRINT 15
FORMAT (991X, “FILTER COEFFICIENTS®//1X,”NUMBER",
* 4X,“UNQUANTIZED  ,7X,“QUANTIZED  , 11X, “ERROR",3¥,
* “MANTISSA? 2X, “EXPONENT ")
DO 13 IDELsY=1,NDELAY
CALL FLCOEF (CONSTCIDELAY) MCM MCE,ICFL(TDELAY),
*+ JCEFLCIDELAY))
CONVERT TO SIGN MAG,
1F CICFLCUIDELAY) oGV o2e%t(MCM=1))
“ JCQFL=ICFLCIDELAY) =2 ,#aM(W
iF CICFLOIDELAY)GLE 2. %% (MCM=~1)) TCQFL=JCFLCIDELAY)
YICFLCIDELAY)SFLOAT(ICQFL)*(2,22(1=M(M))
o (2,8 (ICEFLCIDELAY)))
COEFER=XICFLC(IDELAY)=CONSTCIDELAY)
PRINT 14 JDELAY,CONSTCIDELAY) XICFLUIDELAY),COEFER,
* JCFLCIDELAY) ,ICEFLCIDELAY)
FORMAT () I346XosF10s6,6X,F1N6,8X4F10,6,
* 6X,010,117)
CONTINUE
[ R E X X 2222222222222 222 2R R 22 XXX R RE R ZERX XX

Fig. F.1 (Continued)
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¢ CALCULATE THE INFINITE PRECISION (THEORETICAL) OUTPUY
3 NOUMP=(NDELAY+1./2 s
k. NDUM=(NDELAY=1)/2
- IFCKTHEOR.EG.0) GO TO 2083
HOFF=XICFLINDUMP)
3 D0 19 IpUM=1,NDUM
- 19  HOFFSHOFF4? #XI1CFL(NDUMP=IDUM)I*CIS(PI2#FOOPXIDUMY
3 «DELT)
i GO TO 2054
1 2053 HOFF=CONSTINDUNP)
‘ 50 2055 JouUM=1,NDUM
2055 HOFFEZHOFF+2 (ACONSTI(NDUMP=JDUM)*COS(PI2*FDOP*)DUMS
* DELT)
2054 THEOUT=ASWHOFF ‘
¢ [ I 2 2 R R R X3 AX2X23 20222 k22X222X 232322222222 XXX232123 )
c INITIALIZE ERROR SUMS AND OTHER PARAMETERS
UUERSM=0,
OPERSM=0,
OESQSM=D,
OPESSM=0,
OLFSSM=0.
0DIFSM=0,
OUTMAX3=10ND0,
OUTMIN'100".
OUPMAX==10N0,
OUPMIN=100N,
ODFMAX=~10“0.
ODFMINZ100N,
[ YX2XX32 2222222323222 2 32222232 RX2 2222222222231 22 12%]
INITIAL VALUE FOR RANDU WHICH GIVES UNIFORMLY
DISTRIBUTED RANDOM SAMPLES BETWEEN 04 AND 1, ThEY
ARE SCALED TO RANDOM PHASE VALUES BETWEEN O, AND 2PI.
IXs1234567
EMINX=e(2,#2(MIE~1)=1)
00 21 IDWEL=1,NDWEL
IF CTOWELCCE.JPRNTY AND,TOWEL JLEJJPRNT2) JPRINT=Y
1F JDWEL LT .JPRNT1.0R,IDWEL,GToJPRNTZ2) JPRINT=)
IF (JPRINTSEQ.1) PRINT 2009, IDWEL
2001 FORMAT (/71X ,10C1H*),“DWELL NUMRER”,15/)
CALL RANOU (IX,I1Y,RND)
PHASE=(PI2)*RND
C 1 I AN 2L SRR S EZ RS2 E 2R RSRRRZZR2X22ERR22 X222 22222 2
IMHOUT=0
IMPOUT =0
17HOUT=EMINX
] TIEPOUT=EMINX
ERRSUM=0,
ESQSU"=00

[l e Walky

Fig. F.1 (Continued)
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- 113

111

114
115

2002

2003

o

ERRMIN=100N,

ERRMAX=-1000.

PERSUM=0.,

PESGSM=0,

PERMIN=100"N,

PERMAX2~1000,

DIFSUM=0,

DIFSCS=0,

DIFMIN=100",

01FMAXx=10N0, .
122332222223 2222X2 222222222222 2 X222 X2 RR222X2ZX2A2 222222
IF (JADCLULEQ.N) GO TO 11S

If (IDWEL.NE.4) 60 TO 113

GENERATE GAUSSIAN SAMPLES

N=INCGAV

ARD=63472.0

RND1=ARD*0., 000001

RS=47436.0

SIGRAN=1,0

CALL RANDM (XNyNy0sD,SIGRAN) '
GENERATE NPULSF SAMPLES OF CLUTTER

PO 1111PULSE=1,NPULSE

CIC(IPULSE)=0,

Ca(IPULSE)=D,

JASINCEAU/?

DO 114 IPUL=T1,NPULSE

00 114 J4=1,6

JINC=(IPUL=1)/1T71

IN2IPUL-JINCH*IT]

ME(6=J)v]ITI+IN

JP=E)+JINC

CICIPUL)I®CY(IPULI*XN(IPITH (M) )
CACIPULISCOCIPULIFAN(IPHJQ)I*H (M)
CONTINUE

CONTINUE

ICLUT=0

PO 22 ICYCLE®T1,NCYCLE

1DUME X=0

IF (JPRINT.EQ.1) PRINT 2002, ICYCLE
FORMAT (/3X,°CYCLE®,14)

GENERATE NDELAY SAMPLES OF SIGNAL ¢ CLUTTER FOR EACH
OF I AND Q@ CHANNELS. THEY ARE X1 AND XGQ,
CALL SACGEN

CALCULATE FILTER OUTPUT FOR I CHANNEL
IF (JPRINTLEC.1) PRINTY 2003

FORMAT (3X,°1 CHANNEL®)

CALL FLOFLT (XTI JMFLTILJEFLTI)
CALCULATE FILTER OUTPUT FOR Q CHANNEL

Fig. F.1 (Continued)
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IfF (JPRINTHEQ.Y) PRINT 2004 -
2004 FORMAT (3X,”Q CHANNEL®)
CALL FLOFLT (XQ,JMFLTQ,JEFLTQ)

C COMPUTE RMS OUTPUT USING HARDWARE ALGORITHM AND CONVERY
¢ TO REAL DECIMAL VALUE,
LEVELF=2.,2#MFM
LEVLFT=2 sw (MFT41)
AMFLYI=ITREXCIMFLTI JLEVELF oLEVLFT(LEVELR)
CALL JUSTFY (JMFLTI IDUMEX MRM,EMINR)
JMFELYQ=ITREX(IMFLTO LEVELF JLEVLFT,LEVELR)
CALL JUSTFY (JMFLTQ IDUMEX JMRMEMINX)
CALL RMSHAL (JMFLTTI WIMPLTQLZJEFLTY JEFLTQJRMS (JERMS)
HRMSEFLOAT(IRMSI (2 an(=MRM)I* (2, 0w JERNS)
o CALCULATE PERFECT RMS OUTPUT (SQRT(I*22+0wa2))
¢ CONVERT FIUTER OUTPUTS TO REA(L DECIMAL NUMBERS
PFLTIZFLOATCIMFLTIIN(2 wa(=MRM)) (2, %4 JEFLT])
\ PELTQRFLOAT(IMFLTQY (2,00 (=MRMII (2,40 JEFLTQ)
PRMS=SQRY(PFLTIW®24PFLTQ#%2)
¢ CONVERT PERFECY RMS OUTPUT TO FLOATING POINT NOTATION
IF (PRMS,.LT.1.0) 60 TO 89
IEPRMS =0
R1=PRMS
88 R1=R1/2,
IEPRMS=IEPRMS+1
1F (R1,6E.1.N) GO YO B8
IMPRMS2ZRI# (2, *#MRM)
G0 T0 90
89  MRMI=MRM+1
MRE1SMRE~1
CALL FLCOEF (PPMS,MRMY MRE1,IMPRMS,IEPRNMS)
90  CONTINUE
C ttttttttttﬁt#*t&tt*&ttttitttttttq.ttttﬁtt*ttttttttt'tt
¢ CALCULATE PERFECT RMS STATISYICS
¢ PEROUT=PERFECT RMS OUTPUT=THEORETICAL OUTPUT
¢ PERSUM=SUM OF PEROUT
¢ PAVERRSAVERAGE OF PEROUT OVER RESIDUES CALCULATED
¢ PESCSMaSUM OF PEROUT SQUARED
c PAVSQVEAVERAGE OF SQUARES OF PEROUY
c PAVMSVSROOT MEAN SQUARE 0" PEROUT
¢ PSIGERSVARIANCE OF PEROUTY
PEROUT=PRMS=THFOUT
PERSUM=PERSUMSPEROUT
PAVERRZPERSUM/ICYCLE

PESQSMSPESQSM4PEROUT*#2
PAVSQV=PESOSM/ICYCLE

PAVMSVSSQRT (PAVSQV)
PSIGER=PAVYSQV=~PAVERR**?2
IFCPERMAX LT PEROUT) PERMAXSPEROUY

Fig. F.1 (Continued)




IF(PERMIN.GT.PEROUT) PERMINRPEROUT
CALCULATE HARDWARE RMS STATISTICS
ERROUT=HARDWARE RMS OUTPUT-THEORETICAL OUTPUT
ERRSUM=SUM OF ERROUT
AVGERR=AVERPAGE OF ERROUT OVER RESIDUES CALCULATED
ESQSUM=SUM OF ERROUT SQUARED
AVGSQVs=A JERAGE OF SQUARES OF ERROUT
AVGMSV=ROOT MEAN SQUARE OF ERROUT
SIGERR=VARTANCE OF ERROUT
ERROUTaHPMSTHEOUT
ERRSUMZZRRSUMSERROUT
AVGERR=ERRSUM/ICYCLE
ESQSUMSESGSUMSERROUT##?
AVGSQVSESQSUM/ICYCLE
AVGMSVSSQRT (AVGSQY)
SIGERREAVGSQV=AVGERR®#2
IFC(ERRMAX LT ERROUT) ERRMAXSERROUT
TF(ERRMINGCGTERROUT) ERRMIN®BRROUT
CALCULATE THE DIFFERENCES BETWEEN HARDWARE AND PERFECY
RMS STATISTICS
ERRDIF=ERROUT=PEROUT
DIFSUM=DIFSUMSFRRDIF
AVGDIF=DIFSUM/ICYCLE
DIFSAS=DIFSQS+ERRDIFw?
DIFASVEDIFSQS/ICYCLE
DIFMSVaSQGRT(DIFASY)
VARDIF=DIFASV=AVGDIFww2
IF(DIFMAXLT.ERRDIF) DIFMAX®ERRDIF
TFCDIFMINGETERRDIF) DIFMINSERROIF
[ T111222 222X Yt XX R R XXX 2EXR22 2023222222 2]
INTEGRATION
PERFECT RMS OUTPUT INTEGRATION
LEVLRTS2 ;¢4 (MRT+1)
LEVELI=2 ., a%(MIMeT)
IMPRMS=ITREX (IMPRMS ,LCVELR,LEVLRT,LEVEL])
IF CIJPRINT.EQe1) PRINT 2005 ,PRMS  IMPRMS,IEPRMS
2005 FORMAT(/3Xy“INTEGRATION/6X,"PERFECT RMS”,
* OX G F13.,10,4X,010,3%X,13)
IF (JPRINT.EQe1) PRINY 2007, IMPRMS,IEPR™S
2007 FORMAT (10%,”“TRUNCATED OR EXPANDED”,
* 12%X,010,3%,1%)
CALL JUSTFY (IMPRMS,IEPRMS ,MIM,EMINX)
IF (JPRINTL.EQ.1) PRINT 2008, IMPRMS,IDUMEX
2008 FORMAT (10X, JUSTIFIED VALUE’,18X,010,2Xx,13)
IF(JPRINTLFG,1) PRINT 2006, IMPOUT,IEPOUT
2006 FORMAT(10X, “PREVIOUS INTEGRATOR SuUM”,
* 10X,01043%,13)
CALL ALIGN (IMPOUY ,IMPRMS ,IEPOUT,IEPRMS MIM)

€I TIIIY

oy ™

€M™
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2009 FORMAT (10X, ALIGNED VALUES ,4X,“RMS QUTPUT?,

2010 FORMAT (10X, SUR’,50X,010,3X,13)

4

23
24

2011 FORMAT (90X, JUSTIFIED VALUE®,18X,010,3X,13)

2012 FORMAT (6X,“HARDWARE RWS“Z BXF13,10,46X,010,3%,13)

28
26

22

[ 32 el

888

IF (JPRINT.EG.1) PRINT 2009, IMPRMS,IEPRMS,IMPOUT,
* 1EPOUY

* S5X,010,3%,13/28X, “INVEGRATOR” 45X ,010,3%X,13)
CALL ADDUIMPOUY IMPRMS 4IMPOUT 4IFLAG,LEVELL)
IF (JPRINT.EQ.1) PRINT 2010, IMPOUT,IEPOUT

CHECK FOR OVERFLOW

IF (YFLAG.NE.1) GO TO 23

IMPOUT=IMPOUT/2

TEPOUT=TEPNUT+1

60 T0 24

CALL JUSTFY C(IMPOUT IEPOUT MIM,EMINX)
CONTINUE

IF (JPRINTLEQG.1) PRINT 2011, IMPOUT,IEPOUT

HARDWARE RMS OUTPUT INTEGRATION
IF(JPRINT FQ,1) PRINT 2012y HRMS,JRNS JERMS

JRMSEBITREX(JRMS ,LEVELR,LEVLRT,LEVEL])
IF (JPRINT.EQ.1) PRINT 2007, JRMS,JERMS

CALL JUSTFY (JRMS,IOUMEX MIM,EMINX)

1F (JPRINT.EG,1) PRINT 2008, JRMS,JERMS

1F (JPRINT.EQ.1) PRINT 2006,IMHOUTJEHOUT

CALL ALIGN C(IMHOUT ,JRMS,TEHOUT ,JERMS ,MIM)

1F (JPRINTJEQ.1) PRINT 2009, JRMS,JERMS ,IMNOUT,
* TEHOUT

CALL ADD (IMHOUT,JRMS,IMHOUT JFLAG,LEVELY)

IF (JPRINTL.EQ,1) PRINT 2010, IMHOUT,IEMOUT

1F (IFLAGJNE.1) GO YO 25
IMHOUTSIMROUT/2
TEHOUT=TEHOUT+1

GO YO 26

CALL JUSTFY(IMHOUT,JEHOUT ,MIM,ENINY)

CONTINUE

IF CJPRINT.EQ.1) PRINT 2011, IMHOUT,IEHOUT

CONTINUE

I X 2 X R X2 221232322232 X2 X223 22323 32233222221 X122222¢82]
FORM ARRAYS OF HARDWARE, PERFECT, AND THEORETICAL
INTEGRATOR OUTPUTS AS FUNCTIONS OF OWELL NUMBERS,
POUTEFLOATCIMPOUT)IH (2,04 (=MIM) )2 (2,0¢EPOUT)
OUTPARCIDWFL)=POUTY .
HOUTSFLOAT(IMNOUT)I* (2,49 (=MIM))I (2,44 ]EHOUT)
OUTARCIDWEL)=HOUT

OUTTHE (IDWFL)=NCYCLESTHEOUT

IF (JPRINTLEQ.1) PRINT BB8,0UTTHE(TOWEL) ,OUTPARCIDWEL),
* QOUTAR(CIDWFL)

FORMATY (10X, THEORETICAL ,5X,F13.,17/710x,

Fig. F.1 (Continued)

231




¥

e e e o i g

:f' -
§ : -
3 L

1 * “PERFECT o OX o F13.90/10X . "HARDWARE” 48X ,F13,10)
21 CONTINUE
¢ PRINT A/D SATURATION STATISTICS w ol
PRINY 887, NSAT ’
887 FORMAT (//71X,10(1H*),"THE A/D CONVERTER SATURATED"415,° TIMES®
* J10(1H")/)

c AR RN RSN SRR R AN R R AR PN AN R IR R A NN AR R AR R AN SRR AR RN R .
c CALCULATE INTEGRATOR OUTPUY STATISTICS
P.INT 27

27 rgann1£1u1.rco,‘-~~~ INTEGRATOR QUTPUT STATISTICS?,
* hadndasbad '//,
PRINT 28
28 FORMATC(TE, “INFINITE®,T28 ,ACTUAL RMS HARDWARE?,T66,

*“PERFECT RMS REALIZATION®,T107,°RMS DIFFERENCE" /¢ T6y

¢t PRECISION” /T2, "NUM ANSWER’,T22,70UTPUT*, T35, ERROUT”,
146, VARIANCE? 4T, 0UTPUT? ,T74,“ERROUT*,TRS,"VARIANCE",
*T90  PERRDIF o T111, AVEOIF 2 TI2S,"VARDIF 4/ T2y % ===",
76,120 1H®) o T19,38C1H*) ,TS8,38(1H®),TO7,35(1He))
OUTTHESTHENRETICAL OUTPUT FOR EACH DMWELL

OUTARSHARDWARE RMS OUTPUT FOR EACH OWELL

OUTERR=ZERROR IN HARDWARE RMS OUTPUT FOR EACH DWELL
OUTSIGE=VARIANCE OF HARDWARE RMS ERROR

OUTPARZPERFECT RMS OUTPUT FOR EACH OWELL

OUTPERSERROR IN PERFECT RNS OUTPUT

OUPSIG=VARTANCE OF PERFECT RMS ERROR

OUTDIF=HARDWARE RMS ERROR-PERFECT RMS ERROR
ODAVER=AVERAGE OUTDIF

ODFSIG=VARIANCE OF OUTDILF

00 985S IIDWELST,NDWEL
OUTERR=OUTAR(IIDWEL)=OUTTHE(IIDWEL)
OUTPFRSOUTPAR(IIOWEL)=OUTTHECIIDWEL)
OUTOIFIOUTFRR=OUTPER

OUERSM=OUERSMOUTERR

OPERSM=OPERSM4OUTPER

ODIFSM=0DIFSM+OUTDIF {
OUAVER=OUERSM/TIDWEL |
OPAVER=OPERSM/TIDWEL

ODAVER=ODIFSM/TIDWEL

OESQSM=OESOSMIOUTERR®*2

OPESSM=OPESSMAOUTPER®®2

ODFSSMZODFSSM4OUTDIFae?

OUTSIG=(OESQSM/IIDWEL) ~OUAVER®*2

OUPSTG=(OPFSSM/IIDWEL)~OPAVER W2

ODFSIG=(ODFSSM/IIDWEL) =ODAVER A2

TF(OUTMAX ,LT.OUTERR) OUTMAX=OUTERR

1F(OUTMIN,ET,OUTERR) OUTMINZOUTERR ’
1F(OUPMAX LTLOUTPER) OUPMAX2OUTPER

1FCOUPMIN.ET.OUTPER) OUPMIN=OUTPER

a B NaeBala ol Nl Wg )

Fig. F.1 (Continued)
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IFCODFMAX L'TLOUTDIF) ODFMAX=OUTDIF

IFCODFMINLGT.OUTDIF) ODFMINSOUTDIF

IF (JIDWEL.GEoJPRNTT.AND «1IDWELLELJPRNT2) JMOD=1

IF (TIOWEL LT JPRNTT1,OR.IIDVWEL6TLJPRNT2) JNOD=KNOD
IF(MOD(IIDVEL,JMOD) .NE,O)Y 60 TO 992

PRINY 984,1IDWEL,OUTTHE(IIOWEL) JOUTAR(IIDWELY yOUTERR,
¢OUTSIG,OUTPAR(IIONEL) yOUTPEROUPSI6OUTOIF4ODAVER,0DFSIG

FORMAT(IX,13,7E13,5,3E12.4)

CONTINUE

CONTINUE

ARAREANARORNRINA SOOI AL ARGV AN O AR O NGNS TARA RN G NG NARRI NSO R
PRINT STYATISTICS OVER ALL DWELLS

OUAVER= AVERAGE OUTERR

OPAVERZAVERAGE OUTPER

OUTMINSMINIMUM OUTERR

OUPMIN=MINTMUM OUTPER

ODFMIN=MINTMUM OUTDIF

OUTMAX=MAXTMUM OUTERR

OUPMAX®MAXIMUM OUTPER

ODFMAX=MAXIMUM OUTDIF

PRINT 983,0UAVER,OPAVER,ODAVER,OUTMIN,OUPMIN,ODFMIN,
YOUTMAX OUPMAX ODFMAX

FORMAT (T2, " ~=w= AVERAGE ERROR” T324E12:5:yT714E12:5,797,
WE11 by /g T2y wmme MINIMUM ERROR®,T32,E12,5,T71,812:5,797,
$E1T0by/ T2y "mamm MAXIMUM ERROR® T32,E12.%5,T71,E125,797,
*E11.4)

CONTINUE

sTop

END

SUBROUTINE SACGEN

COMMON/PRINT/JPRINY

COMMON/SACBEN/PI2,DELT FOOPASB5,CS,0S
COMMON/FILTER/ICFL(S12)4ICEFL(512) NDELAY MTH MXM,
AMCM MEM  MCE JMFE MTE CONST(512) 4 XICFL(512)
COMMON/CLYGEN/PHASE ,JCLUT,C1(512),CQ(512)
COMMON/SACOUT/XI(512)¢XQ(512),JADCLY

GENERATE NDELAY SAMPLES OF SIGNAL PLUS CLUTTER
PI=3,1615926538

PI102=P1/2.N

PID2T3=1,5*P1

DC211 ICEL=1 ,NDELAY

ICLUT=SICLUT+Y

PHASESPHASF+PI2*FDOP*DELT

DAS=AS
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CAS=AS
TF(PHASE «GELPI?) PHASE=PHASE~PIZ
IF(PHASE «GFoPl) DASEwAS
IF(PHASE«GT.PID2.ANDoPHASELT,PID2T3I) CAS=«AS
DPHASE=PHASE
IF(DPHASE LCE.PI) DPHASEXDPHASE~PI
IF(OPHASE «GE«PID2) DPHASE=PI=DPHASE
XQUIDEL)=DAS*SIN(DPHASE)
XICIDEL)=CAS«COSCDPHASE)
IF(JADCLU.FQ.0) GO TO 90N
XICIDEL)=XY(IDEL) ¢BS+CSHCI(ICLUT)
XQCIDEL)=XQ(IDEL)+DS=CS#CQEICLUT)
900 CONTINUE
211 CONTINUE
RETURN
END

SUBROUTINE FLOFLT (X MAGACC,IACE)

2 TR I R R e I R R e R I e R e 2T R R 2R L T X
THIS SUBROUTINE ACCEPTS INPUT (SIGNAL ¢ CLUTTER)
SAMPLES AND FILTER COEFFICIENTS. AFTER CONVERTING THE
INPUT SAMPLES TO DIGITAL VALUES IT IMPLEMENTS THE
FIXED WINDOW MT] FIR FILTER IN FLOATING POINY ARITH.

IACC=RANGE BIN ACCUMULATOR MANT]ISSA
IACE=EXPONENT OF THE ACCUMULATOR

MAGACC=MAGNITUDE OF FILTER OUTPUY MANTISSA
TIACE = EXPONENT OF FILTER OUTPUT
[ 2 22 R R 2R3 X 222 RS2 RS2 RRZ 3222222222222 22222222222}
INTEGER EMINY
COMMON/SATUR/NSAT
COMMON/PRINT/JPRINT
COMMON/FILYER/ICFLC(STI2)oICEFL(S512) JNDELAY MTM MXM,
*MCM MEM MCE  MFE MTE ,CONST(512),XICFL(512)
DIMENSION ¥ (S12),ICEXP(512)
EMINI2=(2,4%(MFE~1)=1)
LEVELXZ2 % ¢MXM
LEVELC=2,2+MCM
IACC=0
TACE=EM]INS
AX=2 e (=MYM+Y)
DO 5 KDELAY=1,NDELAY
ICEXP(KDELAY)=ICEFL(KDELAY)
5 CONTINUE
DO 10 I=1,NDELAY

[z NaNaNaNaNaNaNeNalleallal

Fig. F.1 (Continued)
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IODUMEX IS A DUMMY EXPONENT USED FOR CALLING JUSTFY
AFTER TRUNCATION OR EXPANSION., THE ACTUAL EXPONENT
NEEDS TO BE SAVED,

IDUMEX=0

IF C(JPRINTEG41) PRINT 1001, I x(I)

FORMAT (/10X ,"INPUT SAMPLE “,°X(”,12,°)27,F13,10)
THIS CALLS THE A/D CONVERSION ROUTINE IAD,

CALL IAD (X(I) o IX QX LEVELXLISAT)

IF JJPRINTLEG.1) PRINT 1002, IX

FORMAT (10X,”A/D CONVERTED INPUT”,14X,010,5X,°07)

IF ISAT.%G+1 SATURATION OCCURED, SATURATION OCCURS IF
ABS(SIGNAL+CLUTTER) > 1,

IF C(ISAT.NF.1) 6O YO 20

NSATENS/T+4

IMULEMULCIX G ICFLOT) JLEVELXZLEVELE)

1F C(JPRINTLEQ.1) PRINT 100%, IMUL,ICEXP(I)

FORMAT (10X, UNJUSTIFIED PRODUCTZ,14X,017,3X,13)
KEMXMIMCM=?

CALL JUSTFY (IMUL ICEXP(1),K,EMIND)

1F (JPRINTJEQ.Y) PRINT 1006,IMULICEXP(I)

FORMAT (10X, JUSTIFIED PROODUCT ,16%,010,3%X,1%)
LEVELP=Z ,we (Ke1)

LEVELT®2,2¢MTM

LEVELFE2 (%uwMFM

IMTSITREX(TMUL JLEVELP,LEVELT LEVELF)

IF (JPPINTLEQ.1) PRINT 1007, IMY,ICEXP(])
FORMAT (10X, “TRUNCATED OR EXPANDED PRODUCT*,4X,010,3X413)
MEMIsMFM=

CALL JUSTFY C(IMT,IDUMEXMFNMY ,EMIND)

IF (JPRINT.EQ.1) PRINT 1009, IMT,ICEXP(])

FORMAT (10%,“JUSTIFIED VALUE”,18%,010,3X,13)

IF (JPRINTLEQ.1) PRINTY 1010, IACC,IACE

FORMAT (10%,"PREVIOUS ACCUMULATOR SUM’,9%,010,3X,1%)
CALL ALIGN (IMTLIACCLICEXPUI)IACE MFNY)
TFCIPRINT,FQ,1) PRINY 1008, IMY,ICEXP(I),IACC,IACE
FORMAT (10X, “ALIGNED VALUES” oSXy“PRODUCT ,7X,010,3X,
* 13/29X, ACCUMULATOR”,3X,010,3%,13)

CALL ADD (EMT,TACC,IACC.IFLAG,LEVELF)

1F (JPRINTL.EQ,Y1) PRINY 1004, IACC,IACF

FORMAT (10%,“°SUM”,30X,010,3X,13)

IF (IFLAG.NE.1) 60 TO 30

IACC=IACC/?2

TACE=IACE+Y

60 10 11

CALL JUSTFY (IACC,IACE MFM1,EMINT)

IF (JPRINTLEQ.1) PRINT 1011, IACC,IACE

FORMAT (10%,“JUSTIFIED VALUE”,18X,010,3%3X,I%)
CONTINUE

Fig, F.1 (Continued)




Yy O

1005

IR OIOIOIOIOIOIIICIOO YD

1003

120
110

130

Fig. F.1

MAGACC=MAGNF(IACC,LEVELF)

THE OUTPUT OF MAGNF IS A POSITIVE JUSTIFIED NUMBER
SINCE THE INPUT IS A TWO®S COMPLEMENT JUSTIFIED
NUMBER.

IF (JPRINT.EQe1) PRINT 100S5,MAGACC,IACE

FORMAT (/1NX,“FILTER QUTPUT MAGNITUDE®,10X,010,3X,13)
RETURN

END

SUBROUTINE RMSHAL (I1IM,1QM,ITE,IQEIRMS,TERNS)
(22222322222 22222222222 2222222222 2222 2R 22 X222
THIS ROUTINE TAKES THE I AND @ FTLTER OUTPUTS AND
CALCULATES THE RMS APPROX, USING L+¢3/16S IF S/L IS

LESS THAN OR EQUAL TO 1/2, OTHERWIZE, IT USES 3/4L ¢
19/16S. 1IM & 1GM = THE T & @ CHANNEL MAGNITUDES,
RESPECTIVELY, 11 & IGE ARE THEIR RESPECTIVE EXPONENTS,
IRMS & IER¥S ARE THE MAGNITUDE & EXPONENT OF THE RESULT.
IDIV IS AN OPTION FOR CALCULATING 11/16S, 3/16S, AND
3/4L. IF IDIV= 1;

3/165=2(S+S/2)/8 ) ALL

11/716S=((S+S/2)/7448)/2 ) EXPONENTS

374L=(LeL/2)/2 ) UNCHANGED
1F Iblvs=n;

3/168=(S+S/2) ) EXPSEXP~3

11/716S=(S+5/2)/4+S ) EXP=EXP~1

J764L=(LeL/2) )} EXPSEXP~1

IDIV IS READ IN BY THE MAIN PROGRAM
INTEGER EMINP

COMMON/PRINT/JPRINT .

I1F (JPRINTLEQ.1) PRINT 1003, 1IDIV
FORMAT (/3¥,“HARDWARE RMS ALGORITHMZ/1NX,“IDIV‘,13)
COMMON/RMSHAL /MRM LEVELREMINR,IDIV,MRE
EMINRE=(2 ,#&4(MRE=1) =1)

LEVELR=2.%% (MRM+1)

IF (I1IF-1GF) 110,120,130

1F (IIM‘IQ") 110’110’130

ILM=1QM

ILE=1QE

ISM=TIM

1S€E=11E

GO TO 140

ILM=]]Mm

ILE=T1E -

ISw=1QMm

ISE=1QEF

(Continued)
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140 1EDIFF= ILE-ISE
Ri= ILM*0,5¢(2,+#¢1EDIFF)
c THIS TESTS 1IF (S/L) 1S GREATER THAN 0,5 OR NOT
1F (FLOATCYSM),LE.RY) GO YO 150
1F (JPRINT.EQ.1) PRINT 1001
1001 FORMAT (10X,°C(S/L)«6T40,5")
132L=1LMeILM/2
1118Ss(ISMHISM/2)/4+18M
IF (JPRINTLEQ.1) PRINY 1004, I32L,ILE,1118S5,1S€E
1004 FORMAT (1OX,'(3/2)L‘.27x.010.3x.!3110x,‘(11/8)8’.
* 26%,010,3%,13)
IF (I0IV.ER.1) 60 TO 140
ILEsILE-1
1SE=YSE~1 ,
1F C(JPRINTLEQ.1) PRINT 1005, I32L,ILE,11185,15¢
1008 frOPMAT (10*.'(3/4)L'.27x.010,3!.!3/10!.‘(11/16)3’.
* 25%,010,3%,13)
1F (132L.LTe2.%*MRM) GO TO 170
132L=1320L/2
ILESILE+
1F (JPRINTLEQ.Y) PRINT 1006, 132L,ILE
1006 FORMAT (10X, OVERFLOW CORRECTION OF (3/4)L7,3X,010,
* 3X,13)
170 1F (1118S.,LT.2,%*MRM) 6O TO 180
11188=11188/2
ISE=ISE+
1F C(JPRINTLEQ,1) PRINT 1007, I118S,ISE
1007 FORMAT (10X, OVERFLOW CORRECTION OF (11/2)8%,1X,
* 010,3%X,13)
180 136L=132L
1911165=s1118S§
60 YO 1000
160 I34L=132L/2
1F (JPRINTGEQ.1) PRINT 1005, I34L,ILE,11114S,1SE
111168S=11105/2
CALL JUSTFY (I34L,JLE MRM EMINR)
CALL JUSTFY (111168S,ISE,MRM,EMINR)
1F (JPRINT.EQ.Y) PRINT 1011, JB4L,ILE,11116S,15€E
1011 FORMAT (10*"JUSYIFIED VALUES‘.ZX,’(3/&)L‘.9!.010.
* 3N, 13/28X,°C11/16)87,7%,010,3%X,13)
1000 CALL ALIGN (I34L,11116S,1LE,ISE,MRM)
1F C(JPRINTLEQ.1) PRINTY 1008, IS4L,ILE,I1116S5,1IS¢
1008 FORMAT (10X, ALIGNED VALUES” 46X, (3/4)L°,9%,010,
% 3X,13/28X,°C11/16387,7X,010,3X,413)
CALL ADD (T34L,11116S,JRMS,IFLAG,LEVELR)
60 19 2000
150 IF (JPRINT.EQ,9) PRINT 1002
1002 FORMAY (10X ,“(S/L)sLELN.S”)

Fig. F.1 (Continued)
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. 132S=1SM+ISM/2
A ' 1F (JPRINT.EQG.1) PRINT 1012, ILM,ILE,132S5,1SE
{ 1092 FORMAT (10X ,°L 932X 4010,3%,I3/710X,7(3/2)8°,27%,010,
* 3x,13)
IF (IDIV.EQ.1) GO TO 190
ISE=1SE=3
1F (JPRINT.EQ.1) PRINT 1013, I32S,I1SE
1013 FORMAT (10X, (3/716)8%,26%,010,3X,17%)
IF (132SeLTe24%%MRM) GO0 TO 210
1325=1328/?
j ISEsISE+1
13168=1328
IF (JPRINT.EQ.1) PRINT 1014, I1314S,ISE
1014 FORMAT (10Y,°HVERFLOW CORRECTION OF (3/16)$7,3X,
* 010,3X,13)
G0 10 210
190 13146$=132s8/8
1F (JPRINTLEG.1) PRINT 1013, 1316S,IS¢
CALL JUSTFY (I16S5S,1SEMRM,EMINR)
1F (JPRINTLEQ.1) PRINT 1014, 1316S,1SE
1016 FORMAT (10X, JUSTFIED VALUEZ 2%, (3/16)57,28X,010,
* 3X,13)
210  CALL ALIGN (I316S,I1LM,ISE,ILE MR™)
IF (JPRINTLEQ.1) FRINT 1015, ILM,ILE,I3148S5,18¢
1015 FORMAT (10X, ALIGNED VALUES 95X, L s13X,010,3X,
* I3/29K,2(/16)8%,7%X,010,3%,13)
CALL ADD (1316S,ILM,IRMS,IFLAG,LEVELR)
‘ 2000 TERMS=ILE
: IF (JPRINTLEQ,1) PRINT 1N09, IRMS,IERMS
1009 FORMAT (10Y,“SUM’,30X,01N,3X,17)
IF (IFLASWNELT) GO To 220
IRMS=IRMS/?
IERMS=JERMS 41
1F (JPRINTLEO.1) PRINT 1010, IRMS,TERMS
1010 FORMAT (10X ,“OVERFLOW CORRECTION OF SUM“,7X,
* 010,3%,13)
220 RETURN
END

TR P

P —

SUBROUTINE ALIGN (IM1,IM2,1E1,1E2,K)
A R TR R R R e R R e R R Y

THIS ROUTINE TAKES TWO FLOATING POINT NUMBERS AND ALIGNS
THEM SO THFY CAN BE ADDED. IM1 & 1E1 ARE THE MAGNITUDE
AND EXPONENT, RESPECTIVELY, OF THE FIRST NO. IM2 & IEZ2
ARE THE MAGNITUDE AND EXPONENT, RESPECTIVELY, OF THE
SECOND NO, K IS THE NO, OF BIYS USED TO REPRESENT IM1

VYYD

Fig. F.1 (Continued)
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£ IM2 IN TWOS COMP., FORM EXCLUDING THE SIGN B1TS,
THE MAGNITUDE PORTION OF THE SHIFTED NO, IS TRUNCATED
AFTER EACH SHIFT.

PR B R RN R AR AR AR A O AR NN E AN R AN RN IR ARG L R AR ANR RN TN
COMMON/PRINT/JIPRINT

INTEGER TESTY

TEST=2ww#K

JEOmIET~]IE?

IAEBD=1ABS (RED)

JIOIF=244IAFD

1fF (IES: 11,730,220

FRGM HERE TC 12 IF EXPONENT 2 > EXPONENT 1,
IF (IM1.GE.TEST) GO YO 11

IMI=2IMY/IDYF

G0 YO0 12

IMi=INY/2

LED=TED ¢

IMI=IMTITEST

1f (YED,LLT.0) GO TO 11

1E1=1E2

RETURN

FROM HERE TO 22 IF EXPONENT 1 > EXPONENT 2,
1fF (IM2,GE.TEST) GO TO 21

IM2=IM2/1DT1F

GO0 70 22

IM2=1IM2/2

1ED=]ED =Y

IM28IM24TEST

I1F (1ED.GT.0) GO TO 21

1E2alE1

RETURN

END

SUBROUTINE JUSTEY (UNJJEUNJ oK EMIN)

' 2232232222222 3R R XXX 2222 2223210222283 2202 ]
THIS ROUTINE TAKES A FLOATING POINT NUMBER THAT IS IN
TWO3 COMP, FORM, JUSTIFIES 1T AND ADJUSTS THE EXPONENT,
UNJ= UNJUSTIFIED MANTISSA ON ENTRY AND JUSTIFLED
MANTISSA ON RETURN, EUNJ= UNADJUSTFD EXPONENT ON ENTRY
AND THE ADJUSTED EXPONENT ON RETURN,

Kz THE NUMTEF OF BITS IN UNJ EXCLUDING SIGN,

EMINE THE SMALLEST POSSIBLE FXPONENT VALUE

'Y R 2 R 2 3222222223222 2222333222223 22322222 22222 % 2]
INTEGER UNJ, EUNJ, K, EMIN, TVEST

T.STx= 2.**(!'1)

TEST FOR PNSITIVE NR NEGATIVE NO.,1F POS. GO TO 1490

Fig. F.1 (Continued)
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IF (UNJOLTLTEST*2) GO Y0 140
1=0

STRIP OFF SIGN BIT FROM NEGATIVE NUMBER
UNJ=UNJ=(TFST»?2)

YESY FOR O IN ™SB; If S0, DONE
IF (UNJLLTLTEST) GO TO 110
SHIFT NUMBFR LEFT AND INCR COUNT *
UNJ2CUNJ=TFST) %2

I=1+1

60 0 70

REPLACE SIGN BIT
UNJEUNJ+(TEST#2)

ADJUST EXPONFNT

FUNJSEUNJ=T

RETURN

TEST FCR O

1F (UNJWJEG.,O) GO ToO 22N

1an

TEST FOR 1 IN MSR; IF SO, DONE
IF (UNJJGESTEST) GO TO 270
SHIFT NUYBFR LEFFT AND INCREASE COUNTY
UNJ=UNJ*2

I=]¢1

GO YO 160

ADJUST EXPONENT

FEUNJ=EUNJ =T

60 TO0 230

SET EXPONENT TO MINIMUM VALUF
EUNJ=EMIN

CONTINUE

RETUOWN

END

FUNCTION ITREXCINLZLEVLINGZLEVLTR,LVLOUT)

NOTE: THE RITLENGTH USED FOR COMPUTING THE LEVEL
INCLUDES THE SIGN 8IT,

IN HAS MIN BITS (LEVLIN = 2¢#MIN)

TRUNCATE IN TO MTR BITS (LEVLTR = 24+MTR)

ITREXTIN/(LEVLIN/LEVLIR)

EXPAND TO ™OUT BITS (LVLOUT = 2#4MOUT)

TFUITREX oLTSLEVLTR/2) RETURN

ITREX=ITREXSLVLOUT=LEVLTR

RETURN

END

Fig. F.1 (Continued)
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SUBRROUTINE FLCOEF (X, MC,MCE,ICFL,ZCEFL) )

AR NN AR R A AR AR R AR AR O ARG R R AN AR R ARG R ARV AR NSRRI R RGO
THIS ROUTINE TAKES A DECIMAL FRACTION AND CONVERYS IV
INTO A TWOS COMP. FLOATING POINTY FCRM,

Xz THE DECIMAL FRACTION, MC= THE NJIMBER OF BITS TO BE
USED IN THE MANTISSA OF THE FLOATING POINT NO, (WITH
SIGN), MCE= THE NO. OF BITS IN THE EXPONENT (WITHOUT
SIGNY, ICFL= THE MANTISSA,ICEFL® THE EXPONENT,

NOTE AGAIN: ABS(X).LT.1.0

AN RR AN AR AR NN A R AR R AR A AN RN R NS AT AR N SR A N RN N R AR RN b
INTEGER EMIN

L=n

JMAXE (244 (MC=t)) =1

JMINZ=(200(MC=1))

Qa2,%e(=M(C+1)

IMAX= (2 #aM(CE) =1

1=9 ‘

CHECK IF FIXED OR FLOATING COEFFICIENTS ARE YO BE
USEDe FOR FIXED GO TO 11

IF (IMAX.ER.D) GO TO 11

XMAG=0,5

NEXT SIX STATEMENTS TO DETERMINE FLOATING POINT
QUANTIZATINN INTERVAL

IFCARS(X).GEXMAG) GO YO 10

XMAGSXMAG/ 2.0

Isf+1

IF(l.EQ IMAX) GO TN 10

G0 Y0 §

0301(2.**1)

XNEX/Q

IX3XN

XNEXN«] X

IF (IXQEQ JMAX ORIXJEQ,JMIN) Lu¥

1F (ABS(XN) LT.0.5) 60 YO 23

INSIN+ISIGN(T,IX)

IF ROUNDING CAUSED OVERFLOMW, DIVIDF THE MANTISSA B8Y
TWO AND ADJUST THE EXPONENT,

1F (L.NEJ1) GO TO 23

IX®1X%X/2

1z21-1

IF(X.6E,N,) GO TO 20

CONVERT NEGATIVE MANTISSA TO TWO“S COMP FORM
IXSIX$(2,24MC)

EMIN==IMA)X

KsMC=1

IEX==~]

1fF (IMAX.EQ.N) GO TO 21

Fig. F.1 (Continued)
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CALL JUSTFY (IX,1EX,K,EMIN)
21 ICFL=IX

ICEFL=1EX

RETURN

END

L 2 S Rl e T S

SUBROUTINE RANDU (IX,IY,RND)
IVZFLD(5,31,1X%65529)
ANDEIXN] L ASLL13E-9

IX=1v

RETURN

END

R R o S R, 2T

SURROUTINE RANOM(X NoXMEAN,STDEV)
COMMON/NOISE/ARD RND1,RS
DIMENSION X (1)
DO 3 1=1,N
ARNEARDW®2+RSw e
K=ARN/10007000R0,
ARD=(ARN=FLOAT(K)*10N0000000,)71000.
IF(ARDI2,1,2
ARD=1,
Fd RS=RS+1,
RND2=ARD*(0.010N01
DEVOT=SQRT (=2, *ALOG(RNDI))I*#COS(6.2R3185*RND2)
RND1=RND?
XNP=STDEVH*DEVOT
3 X(I)=XNR4XMEAN
RETURN
END

-—h

FUNCTION MUL(NT,N2,LEVELY,LEVELR)

¢ NOTE: THE RITLENGTH USED FOR COMPUTING THE LEVEL
¢ INCLUDES THE SIGN BIT,
¢ CONVERT INPUTS TO SIGNED INTEGER

MAX1=LEVELY/?2

MAX2=LEVEL?/?2

NS1=N1

NS2zN2

IF(NT,GT MAXT) NSI=NT-LEVELY
IF(N2.GT.MAX2) NSZ=N2-LEVEL?2
MUL=NST14NS2

Fig. F.1 (Continued)
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¢ CONVERT PRODUCTY TO TWO:S COMPLEMENT
IF(MUL,GE.N) RETURN
MULSMUL¢C(LEVELT*MAX2)
RETURN
END

FUNCTION MAGNF CINLLEVEL)

¢ NOTE: THE RITLENGTH USED FOR COMPUTING THE LEVEL
INCLUDFS THE SIGN BIT,

MAGNITUDE NF A TWO:S COMPLEMENT NUMBER

IFCINGEQ.LEVEL/2) IN=IN#1

MAGNFRTN

TF(MAGNF LY LEVEL/2) RETURN

MAGNFaLEVEL=MAGNF

RETURN

END

s Wi

SUARNUTINE IAD(X4IXyQyLEVEL,ISAT)
NOTE: THE RITLENGTH USED FOR COMPUTING THE LEVEL
INCLUDES THE SIGN BIT,

(2 N e

1x=%/q
1SAT=0
MAXELEVEL/?=1
1FLIABS(IX) JGELMAX) GO YO 10
IF(XsGE.Ns)Y RETURN
IXSIXN®LEVEL~Y
RETURN
10 IX=JSIGN(MAX,IX)
1SAT=1
IFCIXLLT0) IX®IXSLEVEL
RETURN
END
SURROUTINE ADD(NT N2 ,N3,10FL,LEVEL)
NOTE: THE RITLENGTH USED FOR COMPUTING THE LEVEL
INCLUDES THE SIGN BIY,
MAX®LEVEL/?
10FL=0)
¢ FIND SIGN RITS OF N1 AND N2
ISN1=NT/MAX
ISN2EN2/MAY
c ADD NT AND N2
N3=NT+N2
¢ FIND THE CARRY BIY
1CARRY=0

Fig. F.1 (Continued)
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1F(N3.LT.LFVEL) GO TO 10

ICARRY=1

IGNORE THE CARRY

N3=N3<LEVEL

CONTINUVE

IF N1 AND N2 ARE OF DIFFERENT SIGNS, NO OVERFLOW
IFCISNToNEL.ISN2) RETURN

FIND SIGN RIT OF N3

ISN3=N3/MAX

CHECK FOR OVERFLOW

IFCISN3.EQeICARRY) RETURN

10FL=1

ADD LEVEL BACK IF NUMBER IS NEGATIVE AND AN OVERFLOW
OCCUREDs IT CAN THEN BE CORRECTED FOR OVERFLOW BY
THE CALLING PROGRAM,

IF (ISNT1.EG.1) NI=NI+LEVEL

RETURN

END

Fig. F.1 (Continued)
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